

Luminant Generation Company LLC Luminant 6555 Sierra Dr. Irving, TX 75039

November 30, 2021

Mr. Michael S. Regan, Administrator U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Washington, D.C. 20460 Mail Code 1101A

Re: Martin Lake Steam Electric Station Alternative Liner Demonstration

Dear Administrator Regan:

Luminant Generation Company LLC (Luminant) hereby submits this Alternative Liner Demonstration (ALD) to the U.S. Environmental Protection Agency pursuant to 40 C.F.R. § 257.71(d)(1)(ii) for the Permanent Disposal Pond 5 (PDP-5) located at Martin Lake Steam Electric Station near Tatum, Texas.

On November 25, 2020, Luminant timely submitted to EPA a complete ALD application for PDP-5 that met all of the requirements of 40 C.F.R. § 257.71(d)(1)(i) and placed the complete application in the facility's operating record. The submission of the complete application tolled the deadline for PDP-5 to cease receipt of waste. 40 C.F.R. § 257.71(d)(2)(iii)(A). Because EPA did not notify Luminant that its application was incomplete by the deadline announced by EPA in the preamble to the final rule (April 11, 2021), 85 Fed. Reg. 72,506, 72,528 (Nov. 12, 2020), Luminant considers the application to be deemed complete by operation of law and fully approvable.

Under EPA's regulations, EPA was required to issue a final decision on the application within sixty days of Luminant's submission of the complete application—*i.e.*, no later than January 24, 2021. However, EPA has not made a final decision or published a proposed decision, as required by the regulations. *See* 40 C.F.R. § 257.71(d) ("The Administrator . . . will act on the submissions in accordance with the procedures in paragraph (d)(2) of this section."); *id*. 257.71(d)(2)(iii)(C) ("EPA will issue its decision on the application within sixty days of receiving a complete application."). Thus, EPA's regulations, properly implemented, would have provided Luminant with ten months to prepare its ALD for PDP-5 and to do so in light of EPA's review and approval of its application. EPA's inaction has prejudiced Luminant in its preparation of the ALD for PDP-5.

Further, because EPA has not issued a final decision at all, Luminant's obligation to submit an ALD has not yet arisen under the regulations. The obligation to submit an ALD by November 30, 2021, is only triggered "[i]f the application is approved[.]" 40 C.F.R. § 257.71(d)(1)(ii). Given the required 20-day comment period, *id*. § 257.71(d)(2)(iii)(C), EPA's delay means that the agency will be unable to issue a final decision

before the November 30, 2021 deadline, and thus the requirement for Luminant to submit an ALD by that deadline (or at all) is inapplicable and no longer operative. Given Luminant's submission of a complete application, the tolling of the cease receipt deadline remains, and will continue to remain, in place.

EPA has recognized the problem created by its inaction and the resulting confusion and prejudice for applicants like Luminant. EPA has explained that because "EPA has not yet issued approvals and denials for submitted Part B applications, the time to conduct the demonstration work is narrowing, such that a facility may have difficulty completing the demonstration in the time between an approval and the November 30, 2021 deadline." EPA, Coal Combustion Residuals (CCR) Part B Implementation, Information About the November 30, 2021 Deadline, https://www.epa.gov/coalash/coal-combustion-residuals-ccr-part-b-implementation#Info (last visited Nov. 29, 2021). EPA has further assured applicants that "EPA . . . intends to take actions to ensure that any facility approved to conduct a demonstration has the same amount of time anticipated by the current regulation to initiate and complete the demonstration after an approval." *Id*. Luminant appreciates EPA's intention of rectifying the situation and providing facilities with the ten-month preparation time after the approval of the application, as provided in the regulations. Luminant looks forward to EPA's upcoming actions to ensure that facilities are provided the full ten months in which to prepare their ALD submissions following EPA's approval of an application.

Given the uncertainty that EPA's delay has created, Luminant is submitting the enclosed ALD by the November 30, 2021 deadline that would have applied had EPA acted in a timely fashion. The enclosed ALD addresses the criteria and requirements of 40 C.F.R. § 257.71(d)(1)(ii). As noted in the ALD, there is additional information that Luminant is continuing to collect and that it would have provided in the ALD had Luminant been afforded the full ten-month period. That additional information will be submitted to EPA once it is available, as a supplement to Luminant's complete application as permitted by the regulations. *See* 40 C.F.R. § 257.71(d)(iv). Further, if and when EPA issues a final approval of Luminant's application for PDP-5, Luminant reserves the right to submit a further revised or different ALD within ten months of EPA's final decision, as contemplated by the regulations.

As allowed by the agency, in lieu of hard copies of these documents, electronic files for the ALD were submitted to Richard Huggins, Mary Jackson, Michelle Long, and Jason Mills via email. If you have any questions regarding the ALD submittal, please contact Renee Collins at 214-875-8338 or renee.collins@luminant.com.

Sincerely,

Cynthin E. Wdy

Cynthia Vodopivec Senior Vice President, Environmental Health & Safety

Enclosure

cc: Richard Huggins (via email) Mary Jackson (via email) Michelle Long (via email) Jason Mills (via email)

ALTERNATE LINER DEMONSTRATION

Martin Lake Steam Electric Station - PDP-5 Rusk County, Texas

Submitted to:

Luminant Generation Company LLC

Submitted by:

Golder Associates Inc. 2201 Double Creek Dr Suite 4004 Round Rock, Texas, USA 78664 +1 512 671-3434

Project No. 20142271

November 30, 2021

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Golder Associates Inc. under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that this Alternate Liner Demonstration has been prepared in accordance with the requirements of 40 C.F.R. § 257.71(d)(1)(ii).

Patrick J. Behling, P.E. Principal Engineer Golder Associates Inc. Firm Registration No. F-2578

Table of Contents

1.0	INTR	DDUCTION	1
	1.1	ALD Application	1
	1.2	PDP-5 Location and Configuration	1
	1.3	PDP-5 Liner Construction Documentation	2
2.0	CHAF	RACTERIZATION OF SITE HYDROGEOLOGY - §257.71(d)(1)(ii)(A)	4
	2.1	Hydraulic Conductivity of Uppermost Aquifer - § 257.71(d)(1)(ii)(A)(1)	4
	2.2	Variability of Subsurface Soil Characteristics - § 257.71(d)(1)(ii)(A)(2)	4
	2.3	Sampling Methods Adequate to Characterize Subsurface Variability - § 257.71(d)(1)(ii)(A)(3)	4
	2.4	Sample Locations Sufficient to Capture Subsurface Variability - § 257.71(d)(1)(ii)(A)(4)	5
	2.5	Site Geological History - § 257.71(d)(1)(ii)(A)(5)	5
	2.6	Conceptual Site Model - § 257.71(d)(1)(ii)(A)(6)	5
	2.7	Status of PDP-5 Detection Monitoring Program	6
3.0	GEOT PDP-	ECHNICAL TESTING TO CHARACTERIZE POTENTIAL FOR INFILTRATION THROUGH 5 LINER - § 257.71(d)(1)(ii)(B)	7
	3.1	PDP-5 Liner Testing Methodology	7
	3.2	PDP-5 Liner Testing Results	8
	3.3	Comparison of Geotechnical Laboratory Testing Procedures to § 257.71(d)(1)(ii)(B) Requirements	9
4.0	MATH THRC	IEMATICAL MODELING TO ESTIMATE POTENTIAL EFFECTS OF INFILTRATION DUGH PDP-5 LINER - § 257.71(d)(1)(ii)(C)	10
	4.1	Data Assumptions for PDP-5 Liner Infiltration Modeling	10
	4.2	Geochemical (Mathematical) Modeling of the PDP-5 Liner	12
	4.2.1	Adsorption (Surface Complexation)	12
	4.2.2	Cation Exchange	14
	4.2.3	Geochemical Modeling Approach	14
	4.2.4	Geochemical Modeling Assumptions and Data Handling	14
	4.2.5	Geochemical Modeling Results	15
	4.2.6	Potential Effects of CCL Infiltration Breakthrough Concentrations Above GWPS on Site Groundwater	16
5.0	CON	CLUSIONS	19
6.0	REFE	RENCES	21

TABLES

l able 1	Statistical Background Values for Detection Monitoring Program
Table 2	Detection Monitoring Program - Appendix III Analytical Results Summary
Table 3	PDP-5 Water Sample – Appendix III and General Chemistry Analytical Data
Table 4	PDP-5 Water Sample – Appendix IV Analytical Data
Table 5	Appendix III and General Chemistry Data – PDP-5 Water Sample Compared to EPA 90 th Percentile Porewater and Wastewater Concentrations
Table 6	Appendix IV Data – PDP-5 Water Sample Compared to EPA 90 th Percentile Porewater and Wastewater Concentrations
Table 7	Surface Site Calculations for PDP-5 Liner Based on Measured Iron and Aluminum in Sample
Table 8	Geochemical Modeling 1-D Transport Results – PDP-5 Compacted Cay Liner
Table 9	Estimated Mass Flux of PDP-5 Liner Breakthrough Constituents Relative to Mass in Closed PDP- 12 and -3: PDP-5 Water Sample
Table 10	Estimated Mass Flux of PDP-5 Liner Breakthrough Constituents Relative to Mass in Closed PDP- 1, -2 and -3: EPA 90th Percentile Porewater Concentrations
FIGURES	
Figure 1	Site Location Map
Figure 1 Figure 2	Site Location Map Site Plan
Figure 1 Figure 2 Figure 3	Site Location Map Site Plan Cross Section Location Plan
Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A'
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B'
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb 1-D Transport Model Results for PDP-5 Water – Li, Hg, Mo and Rad 226-228
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb 1-D Transport Model Results for PDP-5 Water – Li, Hg, Mo and Rad 226-228 1-D Transport Model Results for PDP-5 Water – Se and Tl
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb 1-D Transport Model Results for PDP-5 Water – Li, Hg, Mo and Rad 226-228 1-D Transport Model Results for PDP-5 Water – Se and Tl 1-D Transport Model Results for PDP-5 Water – Se and Tl 1-D Transport Model Results for EPA 90 th Percentile Porewater – Sb, As, Ba and Be
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb 1-D Transport Model Results for PDP-5 Water – Li, Hg, Mo and Rad 226-228 1-D Transport Model Results for PDP-5 Water – Se and TI 1-D Transport Model Results for PDP-5 Water – Se and TI 1-D Transport Model Results for EPA 90 th Percentile Porewater – Sb, As, Ba and Be 1-D Transport Model Results for EPA 90 th Percentile Porewater – Cd, Cr, Co and Pb
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13	Site Location Map Site Plan Cross Section Location Plan Geologic Cross Section A-A' Geologic Cross Section B-B' Clay Liner and Pond Water Sample Locations 1-D Transport Model Results for PDP-5 Water – Sb, As, Ba and Be 1-D Transport Model Results for PDP-5 Water – Cd, Cr, Co and Pb 1-D Transport Model Results for PDP-5 Water – Li, Hg, Mo and Rad 226-228 1-D Transport Model Results for PDP-5 Water – Se and Tl 1-D Transport Model Results for EPA 90 th Percentile Porewater – Sb, As, Ba and Be 1-D Transport Model Results for EPA 90 th Percentile Porewater – Cd, Cr, Co and Pb 1-D Transport Model Results for EPA 90 th Percentile Porewater – Li, Hg, Mo and Rad 226-228

APPENDICES

- Appendix A CCR Monitoring Well Logs
- Appendix B Photograph of Modified ASTM D7100 Hydraulic Conductivity Testing Apparatus
- Appendix C PDP-5 CCL Geotechnical Laboratory Reports
- Appendix D PDP-5 Water Sample Laboratory Analytical Reports
- Appendix E PDP-5 CCL Total Iron and Aluminum and CEC Laboratory Analytical Reports
- Appendix F 90th Percentile Impoundment Concentrations from 2014 EPA Risk Report
- Appendix G Background Groundwater Laboratory Analytical Reports

1.0 INTRODUCTION

Pursuant to 40 C.F.R. § 257.71(d)(1)(ii), Golder Associates Inc. (Golder) has prepared this Alternate Liner Demonstration (ALD) on behalf of Luminant Generation Company LLC (Luminant) for Permanent Disposal Pond 5 (PDP-5) located at the Martin Lake Steam Electric Station (MLSES) in Rusk County, Texas. PDP-5 is used to store CCRs from other MLSES CCR surface impoundments during cleaning cycles and for storage of water from large precipitation events and excess process wastewater from the MLSES flue gas desulfurization (FGD) system (scrubber gypsum) and bottom ash transport systems. PDP-5 is active and is considered an Existing CCR Surface Impoundment under 40 C.F.R. Part 257, Subpart D (the Coal Combustion Residuals (CCR) Rule).

PDP-5 is constructed with a compacted clay liner (CCL) measuring 3 feet thick on the sides of the perimeter berms and 2 feet thick on the bottom of the impoundment. The CCL exhibits a hydraulic conductivity of no more than 1 X 10⁻⁷ cm/sec. The liner for PDP-5 is:

- Not a composite liner that meets the requirements of § 257.70(b) as specified in § 257.71(a)(1)(ii) of the CCR Rule; and
- Not an alternative composite liner that meets the requirements of § 257.70(c) as specified in § 257.71(a)(1)(iii) of the CCR Rule.

The objective of this ALD is to demonstrate that, based on the construction of PDP-5 and surrounding site conditions, there is no reasonable probability that operation of PDP-5 will result in concentrations of Appendix IV constituents in the uppermost aquifer at levels above a groundwater protection standard. beyond the boundaries of PDP-5. This ALD was prepared in accordance with § 257.71(d)(1)(ii).

1.1 ALD Application

Luminant prepared an ALD application for PDP-5 in accordance with § 257.71(d)(1)(i) to serve as notice that Luminant intended to submit an ALD to USEPA to demonstrate that the design of the PDP-5 liner system performs equivalent to a composite liner as defined in § 257.70(b) (Golder, 2020a). The ALD Application was transmitted to USEPA prior to the November 30, 2020 application deadline specified in § 257.71(d)(1)(i)(D)(2). To date, Luminant has not received a response from EPA concerning the submitted ALD Application.

1.2 PDP-5 Location and Configuration

PDP-5 was constructed in 2010 and is located approximately 3,000 feet west of the MLSES power units and approximately 1,500 feet from the nearest branch of Martin Lake (Figure 1). PDP-5 is registered with the Texas Commission on Environmental Quality (TCEQ) as industrial solid waste management unit (WMU) No. 024 under Solid Waste Registration No. 31227.

PDP-5 and adjacent areas are shown on Figure 2. PDP-5 was constructed above grade and is surrounded by earthen embankments that extend approximately 10 to 15 feet above the adjacent ground surface (B&M, 2016b). The elevation of the top of the PDP-5 berms is approximately El. 405.5. The maximum operating water surface elevation in PDP-5 is approximately El. 403.5.

PDP-5 was constructed on top of three closed in-place, non-CCR Rule regulated, former coal ash surface impoundments (PDP-1, PDP-2 and PDP-3) that historically received wastewater streams and solids similar to those currently managed in PDP-5. The configuration of PDP-5 relative to the closed underlying former impoundments is shown on Figures 3, 4 and 5. As shown on the figures, the lateral extent of PDP-5 is wholly contained within the boundaries of the underlying closed PDP-1, -2 and -3.

Key design and operating characteristics for PDP-1, -2 and -3 can be summarized as follows:

- <u>PDP-1</u>. PDP-1 was constructed in 1979 and covered an area of approximately 15 acres. The impoundment was lined with a 36 mil Hypalon liner underlain by an unconfirmed thickness of compacted clay on the bottom and side walls. PDP-1 operated from 1979 until 1981. Fluids from PDP-1 were drained and PDP-1 was capped with an interim clay/soil cap in 1983. PDP-1 is registered with the TCEQ as WMU-004.
- PDP-2. PDP-2 was constructed in 1981 and covered an area of approximately 10 acres. The impoundment was lined with a 3 feet thick compacted clay liner. PDP-2 operated from 1981 until 1983. Fluids were drained from PDP-2 and PDP-2 was capped with an interim soil cap in 1983. PDP-2 is registered with the TCEQ as WMU-005.
- <u>PDP-3</u>. PDP-3 was constructed in 1982 and covered an area of approximately 27 acres. The impoundment was lined with a 3 feet thick compacted clay liner on the sides of the perimeter berms and 2 feet thick compacted clay liner on the bottom of the pond. The bottom liner was underlain by a 1.5 feet thick sand blanket and an additional 1 foot-thick layer of compacted clay. PDP-3 was placed into operation in 1982 and operated until PDP-5 was constructed in 2010. PDP-3 is registered with the TCEQ as WMU-006.

PDP-1, -2 and -3 were capped/closed as landfills as part of the construction of PDP-5. Fluids were drained from PDP-3 prior to closure and the PDP-5 CCL was constructed to serve as a low permeability clay cap for the closed PDP-1, -2 and -3. TCEQ approved closure of PDP-1, -2 and -3 in 2015 (TCEQ, 2015).

A fourth closed in-pace, non-CCR Rule regulated former coal ash surface impoundment (PDP-4) is located adjacent to PDP-5 to the south. PDP-4 was constructed in 1982 and covered an area of approximately 15 acres. The impoundment was lined with a 36 mil Hypalon liner underlain by a 3 feet thick compacted clay liner and is registered with the TCEQ as WMU-008. PDP-4 began operating in 1982 and stopped receiving coal ash prior to the October 2015 effective date of the CCR Rule. PDP-4 is registered with the TCEQ as WMU-008. Fluids were drained from PDP-4 and PDP-4 was capped/closed in-place as a landfill. TCEQ approved closure of PDP-4 in 2017 (TCEQ, 2017).

1.3 PDP-5 Liner Construction Documentation

PDP-5 is constructed with a compacted clay liner measuring 3 feet thick on the sides of the perimeter berms and 2 feet thick on the bottom of the impoundment. The CCL exhibits a hydraulic conductivity of no more than 1 X 10⁻⁷ cm/sec. The PDP-5 CCL also serves as the low permeability clay cap for the closed PDP units upon which PDP-5 was constructed (PDP-1, -2 and -3) and the CCL extends beyond the exterior toe of the perimeter berms of PDP-5 as shown on Figures 3, 4 and 5. All soil used to construct the CCL originated from an on-site borrow source located immediately west of PDP-5.

A professional engineer-certified Summary of Liner Construction Report was completed in September 2016 to document construction of the PDP-5 CCL in accordance with the requirements of § 257.71(b) and placed in the MLSES Facility operating record (B&M, 2016a). The Summary of Liner Construction Report for PDP-5 was included with the ALD Application submitted to USEPA in November 2020 (Golder, 2020a).

A professional engineer-certified Soil and Liner Evaluation Report (SLER) was prepared to document on-site inspection, field testing and laboratory testing during construction of the PDP-5 CCL (ETTL, 2011). The SLER concluded the following:

• The PDP-5 CCL was constructed to minimum thicknesses of 3 feet on the sides of the perimeter berms and 2 feet on the bottom of the pond as documented by instrument survey.

- All soil used to construct the CCL was documented to meet the following specifications:
 - Liquid Limit (LL): 30 or greater
 - Plasticity Index (PI):15 or greater
 - Percent Passing No. 200 Sieve: 30 Percent or greater
- The CCL was constructed in parallel, uniform lifts not exceeding nine inches loose, six inches compacted. Each lift was moisture conditioned and compacted to at least 95% of maximum dry density at or above optimum moisture content.
- In place moisture-density tests were performed at a rate of one test per 8,000 square feet for each compacted CCL lift with a nuclear gauge calibrated daily (ASTM D 2922). Approximately 300 tests were performed per liner lift or approximately 1,200 tests for the constructed 2-foot thick bottom CCL.
- Undisturbed CCL samples were collected and subjected to hydraulic conductivity testing (ASTM D 5084) at a rate of one test per 100,000 square feet for each CCL lift. Twenty-four (24) hydraulic conductivity tests were performed per liner lift or a total of ninety-six (96) hydraulic conductivity tests for the constructed 2-foot thick bottom CCL. All undisturbed CCL samples exhibited hydraulic conductivities of nor more than 1 X 10⁻⁷ cm/sec.

A copy of the SLER for PDP-5 was included with the ALD Application submitted to USEPA in November 2020 (Golder, 2020a).

2.0 CHARACTERIZATION OF SITE HYDROGEOLOGY - §257.71(d)(1)(ii)(A)

In accordance with § 257.71(d)(1)(ii)(A), characterization of the variability of site-specific soil and hydrogeology surrounding PDP-5 that will control the rate and direction of contaminant transport from the impoundment is presented in this section.

2.1 Hydraulic Conductivity of Uppermost Aquifer - § 257.71(d)(1)(ii)(A)(1)

Rising- and falling-head aquifer tests (slug tests) were conducted at three monitoring wells (PDP-22, PDP-25, and PDP-26) located along the perimeter of PDP-5 on October 7, 2015 to evaluate the hydraulic characteristics of the uppermost aquifer. Slug test data and time-head change plots were used to calculate hydraulic conductivities using the Bouwer-Rice solution (Bouwer and Rice 1976). Documentation on the slug test methods and data was presented in the Groundwater Monitoring System Certification for the Site (PBW 2017a). The arithmetic mean of the hydraulic conductivities from the slug-in and slug-out data is the representative hydraulic conductivity for each well. A geometric mean of the average hydraulic conductivities from the three wells was also calculated and is considered representative of the PDP 5 Area. The average hydraulic conductivities for the test wells were generally consistent, ranging from 2.48 x 10^{-5} cm/sec (well PDP-22) to 1.37×10^{-4} cm/sec (well PDP-25), with a geometric mean of 4.40×10^{-5} cm/sec.

2.2 Variability of Subsurface Soil Characteristics - § 257.71(d)(1)(ii)(A)(2)

Subsurface soil characteristics at PDP-5 were evaluated based on soil boring information gathered from the CCR monitoring wells that were installed around the perimeter of the unit. The soil borings ranged from approximately 25 to 95 feet below ground surface (bgs) and were all completed to depths that encountered the uppermost aquifer. Copies of the monitoring well boring logs are provided in Appendix A. Cross sections through PDP-5 developed using the geologic information from selected CCR monitoring wells are shown in Figures 3, 4 and 5.

The geologic units encountered during installation of the monitoring wells/soil borings in the vicinity of PDP-5 and in other historic soil borings completed in the area include:

- Zone 1: an upper sand unit observed on hilltops in the area;
- Zone 2: an intermediate continuous clay unit that contains discontinuous, interbedded sand layers; and
- Zone 3: a lower unit of silt and sand with some interbedded clay.

The geologic zones described above generally are laterally consistent across the Site. PDP-5 extends significantly above natural grade and represents a localized topographic high-point relative to the surrounding area. As a result, groundwater is mounded at PDP-5 and flows radially outward from the unit. The stratigraphic location of PDP-5 correlates with the upper hilltop sand unit (Zone 1). The uppermost aquifer at the Site occurs in the lower unit of silt and sand (Zone 3). The CCR monitoring wells are completed in the uppermost aquifer around the perimeter of PDP-5.

2.3 Sampling Methods Adequate to Characterize Subsurface Variability -§ 257.71(d)(1)(ii)(A)(3)

The CCR monitoring wells were installed by a water-well driller licensed by the State of Texas using recognized drilling methods (sonic and hollow-stem auger drilling methods). Soil samples were collected continuously to the base of each monitoring well boring and lithologically logged in the field using the Unified Soil Classification System (USCS). All sampling and aquifer characterization methods used are in line with recognized and

generally accepted practices and provided data at a spatial resolution necessary to adequately characterize the variability of subsurface conditions that control contaminant transport. Appendix A presents the CCR monitoring well boring logs, which document the methods used to characterize subsurface soil conditions. The methods used to evaluate aquifer hydraulic characteristics are summarized in Section 2.1 and were discussed in detail in the Groundwater Monitoring System Certification for the Site (PBW 2017a).

2.4 Sample Locations Sufficient to Capture Subsurface Variability - § 257.71(d)(1)(ii)(A)(4)

All soil borings and monitoring wells used to characterize the hydrogeology of the PDP-5 area were completed to depths below the groundwater table and are sufficiently deep to evaluate the uppermost aquifer. As shown on Figure 1, PDP-5 is not located adjacent to a water body; consequently, § 257.71(d)(1)(ii)(A)(4)(ii) does not apply to PDP-5.

As shown on the cross sections provided on Figures 3, 4 and 5, the geology described in Section 2.2 is generally consistent across the Site. The PDP-5 area represents a localized topographic high-point from which groundwater flows radially outward in all directions, as is common in topographically high areas. As shown on Figure 2, nine monitoring wells (MW-17A, MW-18A, MW-19, MW-20A, PDP-22, PDP-23, PDP-24, PDP-25, PDP-26) are distributed radially along the perimeter of PDP-5 and are screened in the uppermost aquifer to capture groundwater flowing outward from the topographic high-point. The CCR monitoring wells were completed in zones with relatively high sand content, which biases the wells to locations with preferential flow pathways. Based on the soil and aquifer data gathered from the Site, the current CCR groundwater monitoring network adequately addresses subsurface variability at the Site.

2.5 Site Geological History - § 257.71(d)(1)(ii)(A)(5)

PDP-5 is located in the outcrop area of the Eocene-aged Wilcox Group, which regionally consists of interbedded sand, silt, clay, and lignite deposited in paleofluvial-deltaic channel complexes and interchannel flood basins (Barnes, 1965). Based on the CCR applicability study conducted by Burns and McDonnell (2015), PDP-5 is not located within a seismic impact zone or in an area with known faults. Coal ash surface impoundments have been operated in the vicinity of PDP-5 since 1979. PDP-5 was constructed in 2010 above grade and is surrounded by earthen embankments that extend approximately 10 to 15 feet above the adjacent ground surface; consequently, PDP-5 represents a localized topographic high-point relative to the surrounding area.

As described in Section 2.2 and shown on the geologic cross sections presented on Figures 3, 4 and 5, geology in the PDP-5 area consists of an upper sand unit, an intermediate continuous clay unit that contains discontinuous, interbedded sand layers, and a lower unit of silt and sand with some discontinuous, packages of interbedded clay.

The underlying closed former surface impoundments were primarily constructed within the upper hilltop sand unit and/or the confining intermediate clay unit below the hilltop sand unit. A small portion of the closed PDP units also appear to intersect the top of the uppermost aquifer in Zone 3 (Figure 4). The uppermost aquifer at PDP-5 occurs in the lower unit of silt and sand that contains discontinuous packages of interbedded clay. All PDP-5 CCR monitoring wells are screened in the uppermost aquifer and the screened intervals of the wells ensure detection of potential groundwater contamination in the uppermost aquifer from PDP-5.

2.6 Conceptual Site Model - § 257.71(d)(1)(ii)(A)(6)

The conceptual site model is depicted on Figures 3, 4, and 5. As discussed previously, PDP-5 extends

significantly above natural grade and represents a localized topographic high-point relative to the surrounding area. The stratigraphic location of PDP-5 correlates with the upper hilltop sand unit (Zone 1). The uppermost aquifer at the Site occurs in the lower unit of silt and sand (Zone 3), which is typically underlain by a clay unit around elevation 320 feet above mean sea level (amsl). The closed former surface impoundments that lie below PDP-5 (PDP-1, PDP-2, and PDP-3) were primarily constructed within the upper hilltop sand unit (Zone 1) and/or the confining intermediate clay unit below the hilltop sand unit (Zone 2). A small portion of the closed PDP units appear to intersect the top of the uppermost aquifer in Zone 3 (Figure 4). Groundwater flows radially outward from the topographic high-point at PDP-5 and the monitoring wells distributed radially along the perimeter of PDP-5 are adequate to ensure detection of potential groundwater contamination in the uppermost aquifer due to PDP-5.

2.7 Status of PDP-5 Detection Monitoring Program

Groundwater monitoring is performed at PDP-5 under a Detection Monitoring Program implemented in accordance with the requirements of § 257.94. The initial detection monitoring samples were collected in September 2017 and subsequent detection monitoring samples were collected on a semi-annual basis thereafter. The results from the 2017 through 2020 detection monitoring events were presented in the Annual Groundwater Monitoring and Corrective Action Reports for 2017 through 2020 (PBW, 2018b; Golder, 2019; Golder, 2020b; Golder, 2021).

Data collected as part of each monitoring event are evaluated using procedures described in the Statistical Analysis Plan (PBW, 2017b) to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. An intrawell data evaluation approach is used to compare the sample data to historical data at each groundwater monitoring well independently based on the following:

- Groundwater is mounded at PDP-5 and flows radially outward from the unit. Based on the direction of groundwater flow, there are no upgradient areas in the vicinity of PDP-5 and all of the CCR monitoring wells are downgradient wells.
- Although PDP-5 was constructed in 2010, coal ash surface impoundments have been operated in the vicinity of PDP-5 since 1979. As a result, groundwater conditions in the vicinity of PDP-5 are influenced by the historical operations of the closed former surface impoundments in the area. Intrawell data evaluations allow for a comparison of water quality data in each well against background values established from that well's own historical water quality data, which takes into account potential effects of the closed former surface impoundwater in the area.
- Use of intrawell data evaluations complies with CCR Rule requirements as well as EPA's *Unified Guidance: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* (EPA, 2009).

Table 1 shows the statistical background Appendix III constituent concentrations developed for each PDP-5 monitoring well and Table 2 summarizes the Appendix III concentrations reported in samples from the PDP-5 monitoring wells from 2017 through 2020.

Low concentrations of Appendix III constituents were reported in all wells from 2017 through 2020 (see Table 2) and SSIs were periodically identified for boron, calcium and/or chloride in wells PDP-23, PDP-25 and/or MW-20A due to the low statistical background concentrations calculated for the constituents in these wells. In accordance with § 257.94(e)(2), Alternate Source Demonstrations (ASDs) prepared each year for PDP-5 determined that the reported SSIs were attributed to natural variation in groundwater quality and the closed former non-CCR Rule regulated coal ash surface impoundments beneath/adjacent to PDP-5 (Golder, 2019; Golder, 2020b; Golder, 2021b). Detection monitoring performed to date at PDP-5 does not indicate evidence of a release of Appendix III constituents to groundwater.

3.0 GEOTECHNICAL TESTING TO CHARACTERIZE POTENTIAL FOR INFILTRATION THROUGH PDP-5 LINER - § 257.71(d)(1)(ii)(B)

PDP-5 is constructed with a CCL measuring 3 feet thick on the sides of the perimeter berms and 2 feet thick on the bottom of the impoundment. As specified in § 257.71(d)(1)(ii)(B), the potential for infiltration through the PDP-5 liner was evaluated using geotechnical laboratory testing of representative clay liner samples. The results of geotechnical laboratory testing to characterize the potential for infiltration through the PDP-5 liner is presented in this section.

3.1 PDP-5 Liner Testing Methodology

The potential for infiltration through the PDP-5 liner was evaluated using the following methodology:

- Representative Sample of PDP-5 CCL. A representative sample of the clay liner in PDP-5 was collected on September 17, 2021 for geotechnical analysis. PDP-5 is active and it is difficult to collect a representative sample of the CCL from PDP-5 while the impoundment is in service. However, as described in Sections 1 and 2 of this report, the CCL for PDP-5 extends beyond the perimeter berms of PDP-5.and serves as the low permeability clay cap for the closed PDP units upon which PDP-5 was constructed (PDP-1, 2 and 3). The clay cap outside of the PDP-5 berms consists of (from bottom to top):
 - 3 feet of compacted clay; and
 - 18 inches of vegetated soil.

Since the same clay soil used to construct the PDP-5 CCL was used to construct the clay cap for the underlying closed impoundments beyond the perimeter berms of PDP-5, and the PDP-5 CCL and the clay cap are contiguous and were constructed as part of the same project, a representative sample of the clay cap for PDP-1, -2 and -3 outside of the PDP-5 berms is representative of the PDP-5 CCL.

Figure 6 shows the location of the clay sample collected from the PDP-1, 2 and 3 cap. The sample was collected as follows:

- Vegetated soil was excavated using a backhoe from an approximately 6 ft X 6 ft area to expose the surface of the underlying compacted clay layer. The excavated vegetated soil was temporarily stockpiled adjacent to the excavated area.
- The upper 6 inches from the surface of the compacted clay layer was excavated using the backhoe and placed in the stockpiled vegetated soil area.
- An additional 6 to 8 inches of the compacted clay layer was excavated using the backhoe to collect the clay samples. Two (2) 5-gallon buckets (approximately 1.5 cubic feet) of excavated clay were collected for laboratory testing.
- After the clay sample was collected, granular bentonite was placed in the excavated section of the clay layer and leveled to match the top of the surrounding clay. Clean water was then sprayed/poured onto the bentonite to hydrate the bentonite.
- After the bentonite was placed/hydrated, the stockpiled clay that was not included in the sample was
 placed over the bentonite and compacted/leveled.
- The stockpiled vegetative soil was placed in the excavated area and the backfilled area graded to
 match adjacent areas. Rye grass seed was then spread over the backfilled area. The two 5-gallon
 buckets containing the clay sample were sealed prior to delivery to the geotechnical laboratory.
- <u>Representative Sample of PDP-5 Water</u>. Section 257.71(d)(1)(ii)(B)(2) specifies that the liquid used to
 pre-hydrate the soil samples and measure the hydraulic conductivity in the laboratory must reflect the pH

and major ion composition of the CCR surface impoundment porewater. To comply with this requirement, a representative sample of the water in PDP-5 was collected on September 17, 2021 for use in the geotechnical testing. Figure 6 shows the location of the PDP-5 water sample.

Water from PDP-5 was collected using a peristaltic pump fitted with disposable tubing. The intake of the tubing was placed in PDP-5 approximately 12 inches below the water surface. Approximately 5 gallons of water was collected and placed in a sealed 5-gallon bucket prior to delivery to the geotechnical laboratory.

- <u>Geotechnical Testing Soil Classification</u>. The clay sample and PDP-5 water sample were transported to the Golder Geotechnical Laboratory located in Houston, Texas. Golder's geotechnical laboratory equipment is calibrated and certified at least once per year by independent agencies using standards traceable to the National Institute of Standards Technology (NIST). This includes all load frames, electronic balances, transducers, load cells, dial and digital gauges, and digital indicators. The laboratory also participates in the American Association of State Highways and Transportation Officials (AASHTO) soil proficiency sample program. The clay sample was tested using the following procedures to classify the soil:
- Grain Size Distribution using ASTM D1140 Standard Test Methods for Determining the Amount of Material Finer than 75-µm (No. 200) Sieve in Soils by Washing;
- Atterberg Limits using ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; and
- Moisture-Density Relationship using ASTM D698 Method A Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort.

The ASTM D1140 and D4318 testing results will be used to classify the soil in accordance with ASTM D2487 – *Standard Practice For Classification Of Soils For Engineering Purposes (Unified Soil Classification System)*. The ASTM D698 results were used to remold/recompact the clay sample prior to hydraulic conductivity testing.

- Geotechnical Testing Hydraulic Conductivity. After the clay was classified and moisture-density relationships were documented, a sample of the clay was remolded and compacted to 95 percent density at 4 percent over optimum moisture content. The remolded sample was then tested for hydraulic conductivity using ASTM D7100 Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions, with the following modifications:
 - Section 257.71(d)(1)(ii)(B)(2) specifies that the liquid used to pre-hydrate the soil samples and measure the hydraulic conductivity in the laboratory must reflect the pH and major ion composition of the CCR surface impoundment porewater. To comply with this requirement, the water collected from PDP-5 was used to pre-hydrate the remolded sample and used as the testing fluid during the hydraulic conductivity test.
 - Section 257.71(d)(1)(ii)(B)(4) specifies that the hydraulic conductivity test be performed until equilibrium has been achieved between the inflow and outflow, within acceptable tolerance limits, for both electrical conductivity and pH. To comply with this requirement, the ASTM D7100 testing apparatus was modified to include fluid bladders at the inlet and outlet of the testing cylinder to allow for collection and measurement of the electrical conductivity and pH of the fluid before passing through the clay sample and after passing through the clay sample (see photograph in Appendix B). The hydraulic conductivity test will be performed until the electrical conductivity and pH of the fluid before and after passing through the sample are approximately equivalent.

3.2 PDP-5 Liner Testing Results

Laboratory analytical reports from the geotechnical testing of the PDP-5 clay liner sample are attached in Appendix C. The results of the testing can be summarized as follows:

- <u>Grain Size Distribution and Atterberg Limits</u> 62 percent of the sample was reported to be finer than a No. 200 sieve and the sample had a Liquid Limit (LL) of 34 and a Plasticity Index (PI) of 17. In accordance with ASTM D2487, the PDP-5 liner sample was classified as a sandy lean clay (CL).
- <u>Moisture-Density</u> The maximum dry density of the sample was 110.9 pounds per cubic foot and the optimum water content was 15.8 percent.
- <u>Hydraulic Conductivity</u> Hydraulic conductivity testing was initiated in October 2021 and is still underway. Test results collected thus far indicate that the hydraulic conductivity of the clay sample is below 1 X 10⁻⁷ cm/sec; however, to date, the electrical conductivity and pH of the fluid before and after passing through the sample have not achieved approximate equilibrium. The testing will continue until the designated criteria have been achieved and the results will be submitted to EPA under separate cover.

3.3 Comparison of Geotechnical Laboratory Testing Procedures to § 257.71(d)(1)(ii)(B) Requirements

The geotechnical laboratory testing performed on the PDP-5 CCL sample complies with the requirements of § 257.71(d)(1)(ii)(B) as follows:

- § 257.71(d)(1)(ii)(B)(1) As described in Sections 1 and 2 of this report, the CCL for PDP-5 also serves as the low permeability clay cap for the closed PDP units upon which PDP-5 was constructed and the CCL extends beyond the perimeter berms of PDP-5. Since the same clay soil used to construct the PDP-5 CCL was used to construct the clay cap for the underlying closed impoundments beyond the perimeter berms of PDP-5 and the PDP-5 liner and the clay cap are contiguous and were constructed as part of the same project, a representative sample of the clay from the PDP-1, 2 and 3 cap outside the PDP-5 berms was collected for the laboratory testing. As described in Section 1.3, the PDP-5 CCL and clay cap were constructed using borrow soil from the same on-site borrow area and were subjected to extensive quality control/quality assurance testing during construction to ensure installation consistency and compliance with the design specifications. Based on these data, the clay sample subjected to the laboratory testing is representative of the PDP-5 CCL and is sufficient to capture the variability of saturated hydraulic conductivity for the liner.
- <u>§ 257.71(d)(1)(ii)(B)(2)</u> Section 257.71(d)(1)(ii)(B)(2) specifies that the liquid used to pre-hydrate the soil samples and measure the hydraulic conductivity in the laboratory must reflect the pH and major ion composition of the CCR surface impoundment porewater. A representative sample of the water in PDP-5 was used to perform the geotechnical laboratory hydraulic conductivity testing.
- <u>§ 257.71(d)(1)(ii)(B)(3)</u> The PDP-5 CCL is a mechanically compacted, constructed liner and naturally
 occurring soils are not part of the liner system. As a result, this criterion does not apply to the PDP-5 liner
 testing program.
- § 257.71(d)(1)(ii)(B)(4) Section 257.71(d)(1)(ii)(B)(4) specifies that the hydraulic conductivity test be performed until equilibrium has been achieved between the inflow and outflow, within acceptable tolerance limits, for both electrical conductivity and pH. To comply with this requirement, the ASTM D7100 testing apparatus was modified to include fluid bladders at the inlet and outlet of the testing cylinder to allow for collection and measurement of the electrical conductivity and pH of the fluid before passing through the clay sample and after passing through the clay sample. Hydraulic conductivity testing was initiated in October 2021 and is still underway. Test results collected thus far indicate that the hydraulic conductivity of the clay sample is below 1 X 10⁻⁷ cm/sec; however, to date, the electrical conductivity and pH of the fluid before and after passing through the sample have not achieved approximate equilibrium. The testing will continue until the designated criteria have been achieved.

4.0 MATHEMATICAL MODELING TO ESTIMATE POTENTIAL EFFECTS OF INFILTRATION THROUGH PDP-5 LINER - § 257.71(d)(1)(ii)(C)

Section 257.71(d)(1)(ii)(C) specifies that a mathematical model be used to evaluate the potential effects of infiltration of Appendix IV constituents through an impoundment liner on groundwater conditions in the vicinity of the impoundment. Mathematical modeling to assess the potential effects of Appendix IV constituents infiltrating through the PDP-5 CCL liner on underlying groundwater was performed as follows:

- A representative sample of the water in PDP-5 was collected and analyzed for Appendix IV constituents and general chemistry to establish site-specific characteristics of the water in the impoundment that could potentially infiltrate through the CCL.
- A representative sample of the PDP-5 CCL was collected and analyzed for total aluminum, total iron and cation exchange capacity (CEC) to establish site-specific CCL characteristics for use in the model.
- Geochemical modeling was conducted to evaluate the potential transport of Appendix IV constituents in the PDP-5 water infiltrating through the PDP-5 CCL.
- Additional geochemical modeling was conducted using national-scale data for Appendix IV constituent concentrations sourced from the existing EPA risk record as stipulated in § 257.71(d)(1)(ii)(C) to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL under simulated, hypothetical worst-case conditions.
- Liner breakthrough concentrations of Appendix IV constituents under the site-specific and worst-case simulated infiltration scenarios were compared to groundwater protection standards (GWPS) for each constituent. If the modeled liner breakthrough concentration was less than the GWPS, no adverse effect on underlying groundwater was indicated and the existing PDP-5 CCL was deemed to be protective of underlying groundwater for that constituent.
- If the modeled PDP-5 liner breakthrough concentration was greater than the GWPS, the mass flux of the breakthrough constituent through the liner was calculated and compared to the estimated mass of that constituent that exists in the large volume of coal ash contained in the closed in-place, underlying former PDP-1, -2 and -3 impoundments. As described earlier in this report, PDP-5 is constructed on top of closed former ash impoundments PDP-1, -2 and -3 and any fluid that infiltrates through the PDP-5 liner will pass into the underlying former impoundments. The ash present in the underlying former impoundments contains the same Appendix IV constituent through the PDP-5 CCL represents only a small fraction of the mass of that same constituent present in the underlying closed former impoundments, the incremental risk to groundwater posed by the potential infiltration of that constituent through the PDP-5 CCL is negligible.

The results of mathematical modeling to assess the potential effects of Appendix IV constituents infiltrating through the PDP-5 CCL liner on underlying groundwater are presented in this section.

4.1 Data Assumptions for PDP-5 Liner Infiltration Modeling

The following site-specific and publicly available data were used to perform the mathematical modeling of the potential effects of infiltration through the PDP-5 liner:

• <u>PDP-5 Water</u>. A representative sample of the water in PDP-5 was collected on October 28, 2021 and submitted to DHL Analytical of Round Rock, Texas for laboratory analysis. The PDP-5 water sample was collected from approximately the same location as the water sample previously collect in September 2021 for use in the geotechnical testing described in Section 3.0 of this report (see Figure 6). A sample collection form for the PDP-5 water sample is reproduced in Appendix D. Due to high turbidity observed in the PDP-5 surface water during the sampling (up to 1,000 NTU), the sample was collected in

unpreserved containers and filtered at the laboratory using a 0.45 micron filter prior to preservation and analysis.

The PDP-5 water sample was analyzed for the following constituents:

- Appendix IV Constituents:
 - Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Lead, Lithium, Mercury, Molybdenum, Selenium and Thallium using EPA Methods SW6020B and SW7407A;
 - Fluoride using EPA Method E300; and
 - Radium 226 and 228 using Standard Method SM7500Ra-B M and EPA Method 904/9320.
- Appendix III and General Chemistry Parameters:
 - Boron, Calcium, Magnesium, Potassium and Sodium using EPA Method SW6020B;
 - Chloride, Sulfate, and Fluoride using EPA Method E300;
 - Total Dissolved Solids (TDS) using Method M2540C;
 - pH using Method M4500; and
 - Alkalinity using Method M2320B.

Sampling results for the PDP-5 water sample are summarized in Tables 3 and 4 and laboratory reports are reproduced in Appendix D. It should be noted that radium 226 and 228 concentrations in the PDP-5 water sample were not available prior to the date of this report. As a result, a total radium concentration of 5 pCi/L (the GWPS for radium) was assumed to be present in the PDP-5 water for mathematical modeling of the potential effects of infiltration through the PDP-5 CCL. It is anticipated that the actual PDP-5 pond water radium concentration is significantly less than the assumed 5 pCi/L value, since the total radium concentration in a similar pond water sample collected from the MLSES East Ash Pond was 0.337 pCi/L. The geochemical model will be updated once the PDP-5 water sample radium results have been received and the updated model results will be submitted to EPA under separate cover.

- <u>PDP-5 CCL</u>. A representative sample of the clay liner in PDP-5 was also collected on September 17, 2021 for chemical analysis to evaluate the attenuation capacity of the clay as part of the mathematical modeling. The tests included:
 - <u>Total metals (Iron and Aluminum)</u>: This test was used to quantify the iron and aluminum present in the PDP-5 CCL. The total mass of iron and aluminum was used to determine the density of adsorption sites available for attenuation based on a Surface Complexation Model (described in Section 4.2). Total iron and aluminum were analyzed using EPA Method SW6010C.
 - Cation exchange capacity (CEC): The CEC represents the total number of negative charge sites in a given amount of solid at which reversible cation adsorption and desorption can occur (Hem 1985). The CEC of a material also commonly refers to the replacement of one cation by another in a selective series or preferred adsorption. In this case, the sorption selectivity increases with the ionic radius of the ion, for instance in the following series: K⁺ > Na⁺ > Li⁺ > Ba²⁺ > Sr²⁺ > Ca²⁺ > Mg²⁺ (Smith 1999). This information is used for geochemical modeling as the release or attenuation of many trace metals is affected by the CEC of soil in the aquifer. The laboratory analyzed the CEC of soil samples using method USEPA SW9081.

Laboratory reports are reproduced in Appendix E.

<u>EPA Risk Record Data</u>. Section 257.71(d)(1)(ii)(C) stipulates that national-scale data for Appendix IV constituent concentrations sourced from the existing EPA risk record be considered in the evaluation. Data from EPA's *Human and Ecological Risk Assessment of Coal Combustion Residuals* (EPA, 2014)

was used to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL under simulated, worst-case conditions. Table 3-1 from the EPA document showing 90th percentile Impoundment Porewater, Wastewater and Whole Waste concentrations for Appendix IV and other constituents is reproduced in Appendix F. It should be noted that the EPA 90th percentile Impoundment Porewater Appendix III and Appendix IV concentrations are significantly higher than the actual PDP-5 water Appendix III and Appendix IV concentrations as shown in Tables 5 and 6.

• <u>Hydraulic Flux Through PDP-5 CCL</u>. The rate of fluid seepage (hydraulic flux) through the PDP-5 CCL is an important data input for the geochemical model. The hydraulic flux through the PDP-5 liner was estimated using the following modified Darcy Equation:

V = k * ((H+d)/d)

where: V = hydraulic flux through CCL

k = hydraulic conductivity of the CCL

H = vertical distance measured between the top of the CCL and the water surface in PDP-5 d = thickness of the CCL

The following site-specific values were used to calculate the hydraulic flux through the PDP-5 CCL:

 $k = 1 X 10^{-7} \text{ cm/sec}$

H = 11 feet (PDP-5 operating level of El. 403.5 minus the top of liner elevation at the interior toe of the perimeter dike (El. 392.5) as shown on Figures 4 and 5. d = 2 feet

Plugging these values into the above equation, the hydraulic flux through the PDP-5 CCL is estimated to be 6.5 X 10⁻⁷ cm/sec or approximately 0.67 feet/year.

• <u>Model Duration</u>. The Infiltration models were run for a period of 50 years. The modeling period is assumed to begin when the PDP-5 CCL was constructed (2010), so the duration of the model extends until approximately 2060. This time frame is conservatively assumed to exceed the projected active life of PDP-5.

4.2 Geochemical (Mathematical) Modeling of the PDP-5 Liner

Geochemical modeling was conducted to evaluate the potential transport of the Appendix IV constituents through the PDP-5 CCL. The geochemical computer code developed by the United States Geological Survey (USGS), PHREEQC, was used for these simulations (Parkhurst and Appelo 2013). PHREEQC version 3.6 is a free, publicly available general-purpose model that is well established in academia and accepted by federal agencies and laboratories and the model can be used to simulate reactions in water and between water and solid mineral phases (e.g., rocks and sediments). PHREEQC is capable of 1-dimensional reactive transport, and can incorporate reactions that include aqueous equilibria, mineral dissolution and precipitation, cation and ion exchange, surface complexation, solid solutions, gas-water equilibrium, and kinetic biogeochemical reactions. The widely accepted thermodynamic database included with PHREEQC, Minteq.v4, 2021 edition (USEPA 1998, as amended), was used as a basis for the thermodynamic constants required for modeling, with additions from recent literature as required.

4.2.1 Adsorption (Surface Complexation)

Adsorption is an important mechanism by which constituents can be attenuated as they flow through the PDP-5 CCL. The adsorptive partitioning between dissolved and solid phases for this model was simulated using a two-layer surface complexation model (SCM). The SCM approach is described in Davis and Kent (1990), with additional parameterization based on Dzombak and Morel (1990) and Karamalidis and Dzombak (2010) utilizing

iron (hydrous ferric oxide [Hfo]) as ferrihydrite [Fe(OH)_{3(am)}], and aluminum (hydrous aluminum oxide [Hao]) as gibbsite [Al(OH)_{3(am)}], as adsorbing surfaces.

The amounts of Hfo and Hao available in the PDP-5 CCL material for attenuation were measured using a total extraction and is quantified in Table 7. The Hfo and Hao surface properties (i.e., surface area, site density, and types of sites) were calculated based on guidance from Dzombak and Morel (1990) and Karamalidis and Dzombak (2010) to quantify the iron and aluminum adsorption sites per mole of mineral.

The calculation methodology of Appelo and Postma (2010) was used to determine the specific quantity of sites on each mineral surface type as a function of the amount of mineral available to participate in these reactions. The methodology assumes the number of surface sites (sites) equals the product of the moles of iron ([Fe]) and the moles of surface sites per mole of iron ([sites]/[Fe]= 0.2 moles of sites per mole of iron). For the amount of ferrihydrite available for sorption, the Appelo and Postma methodology further assumes the mass of ferrihydrite (m_{Hfo}) in grams (g) available equals the product of the [Fe] and the molecular weight of ferrihydrite (m_{wHfo} = 88.85 g/mole). The same approach was used to calculate the number of sites from gibbsite, assuming the [sites]/[AI] is 0.41 moles of sites per mole of aluminum and the molecular weight of gibbsite is 78.003 g/mole.

The geochemical thermodynamic database Minteq V.4 was used to conduct adsorption modeling. However, new and updated thermodynamic data have been released in scientific literature. These new data are important to include in the geochemical modeling exercises for certain elements or minerals as they allow further refinement of potential reactions, or for correction of previous data that may have been less accurate or more broadly defined. For groundwater modeling at the Site, Golder made numerous updates to the Minteq V.4 database, including the addition of data relating to partitioning coefficients for metals on gibbsite, developed by Karamalidis and Dzombak (2010). Of the two constituents of interest, the database did not contain partitioning coefficients for ferrihydrite or gibbsite for lithium, so its potential for adsorption could not be assessed using this method. Instead, lithium was modeled using the CEC as described in Section 4.1.

Parameter	Unit	Ferrihydrite	Gibbsite
	mg/kg	18,500	13,200
PDP-5 Solids Composition	mmol	331.3	489.22
	mol	3.31E-01	4.89-E01
	mol weak sites / mol	0.2	0.444
Surface Site Concentration	mol strong sites / mol	0.005	0.41"
	mol weak	6.6E-02	
Surface Sites	mol strong	1.7E-03	2.0E-01*
Mass of Ferrihydrite or Gibbsite	grams	29.4	38.2

Table 7: Surface Site Calculations for PDP-5 Liner Based on Measured Iron and Aluminium in Sar	mple
--	------

Note: Gibbsite in the Karamalidis and Dzombak (2010) adsorption model has a single surface site type and is note specified as strong or weak sites.

4.2.2 Cation Exchange

To quantify the CEC, a generalized CEC model was used in PHREEQC. The CEC represents the total number of negative charge sites in a given amount of solid at which reversible cation adsorption and desorption can occur (Hem 1985). Cation exchange also commonly refers to the replacement of one cation by another in a selective series or preferred adsorption. In this case, the sorption selectivity increases with the ionic radius of the ion, for instance in the following series: $K^+ > Na^+ > Li^+ > Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$ (Smith 1999). For modeling purposes, the number of sites can be calculated using Equation 1 (Breeuwsma et al. 1986):

 $X^{-}(sites) = CEC/(100/sw)(n/(1-n))(Equation 1)$

where *sw* is the bulk density of the soil matrix, and *n* is the porosity.

For attenuation modeling for the PDP-5 CCL, a direct measurement of the CEC in the CCL by a certified laboratory was utilized (see Appendix E). The resulting value, 14.9 meq/100g of soil equated to 0.92 moles of exchange sites used in PHREEQC for 1-D reactive transport modeling.

4.2.3 Geochemical Modeling Approach

Two 1-D reactive transport model scenarios were evaluated to assess potential infiltration through the PDP-5 CCL as part of this ALD:

- <u>Scenario 1 PDP-5 Water (Actual Conditions)</u>. Modeling was conducted to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL using source concentrations from a representative sample of PDP-5 water.
- <u>Scenario 2 EPA Risk Record Data (Hypothetical Worst-Case Scenario)</u>. Section 257.71(d)(1)(ii)(C) stipulates that national-scale data for Appendix IV constituent concentrations sourced from the existing EPA risk record be considered in the evaluation. Under this scenario, modeling was conducted to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL using source concentrations based on the 90th percentile pore water concentrations as listed in EPA's Human and Ecological Risk Assessment of Coal Combustion Residuals document to simulate a hypothetical worst case scenario since the EPA 90th percentile concentrations are significantly higher than the actual PDP-5 water concentrations modeled under Scenario 1.

Modeling under both scenarios included an initial pre-equilibration of the PDP-5 CCL with background groundwater data from the Site to equilibrate the surface SCM sites and CEC sites to native background conditions and prevent over attenuation. The pre-equilibrium step was used to simulate the condition of the CCL at the start of PDP-5 operations, since a "clean surface" of the clay without the pre-equilibrium step would not provide an accurate representation of actual CCL attenuation capacity as no clay has "clean" surface sites in nature. PDP-5 water (Scenario 1) and the 90th percentile Impoundment Porewater (Scenario 2) was then fluxed through the PDP-5 CCL using 1-dimensional reactive transport to determine the time of breakthrough, the resulting concentrations of App. IV constituents in the respective eluents after transport, and the attenuation capacity of the PDP-5 CCL for each App. IV metal.

4.2.4 Geochemical Modeling Assumptions and Data Handling

Assumptions related to data handling practices and geochemical modeling were as follows:

 <u>PDP-5 water chemistry</u>: For geochemical modeling of Scenario 1, a sample with a full suite of parameters as described in Section 4.1 were used in this assessment (including standard groundwater cations and anions, App. III and App. IV metals, pH, and redox). The resulting data are assumed to provide a comprehensive overview of the PDP-5 water at the site.

- <u>Background groundwater chemistry:</u> Groundwater is mounded at PDP-5 and flows radially outward from the unit and all of the PDP-5 CCR monitoring wells are therefore downgradient wells. Prior to the start of PDP-5 operation and exposure to CCR, the PDP-5 CCL exhibited an initial natural geochemical condition that is reflected at the start of the model. Since there are no upgradient/background monitoring wells at PDP-5, data from a groundwater sample collected from another location at the MLSES (Well H-27) were assumed to represent natural background conditions for the purpose of geochemical and predictive modeling (see Appendix G).
- National scale chemistry (EPA 90th percentile impoundment porewater): A representative leachate sample was used as a source of flux for scenario 2, that was developed per Section 4.1. Table 3-1 from the EPA document showing "90th Percentile Impoundment Porewater, Wastewater and Whole Waste Concentrations" for Appendix IV and other constituents is reproduced in Appendix F
- Liner thickness and flux rate: For modeling, the CCL thickness was held constant at two feet (the bottom thickness) and the hydraulic flux rate was held constant at 0.67 feet/ year (see Section 4.1).
- <u>Non-detect values</u>: Constituents with concentrations less than their respective method detection limits were assumed to have a concentration equal to ½ the reporting limit in model simulations. For equilibrium of the PDP-5 CCL for purposes of "pre-loading" the surfaces, an equivalent of the background groundwater sample was equilibrated with the PDP-5 CCL that only included actual detected parameters.
- <u>Charge balance:</u> Water compositions for modeling all had a charge balance errors less than 10%.

4.2.5 Geochemical Modeling Results

The results of the 1-dimensional geochemical reactive transport modeling of the two scenarios are provided in Table 8. Table 8 includes the peak concentration of each Appendix IV constituent and the corresponding GWPS expected over the 50-year model timeframe (starting when the PDP-5 CCL was constructed in 2010 and extending until approximately 2060). Figures 7-14 show the expected Appendix IV metal expected concentrations in the water that infiltrates through the CCL over the 50 years modeling period.

- <u>Scenario 1 PDP-5 Water (Actual Conditions)</u>: The results of 1-D reactive transport modeling indicated that within the 50-year modeling period, it is predicted that lithium is the only App. IV constituent that will exceed the GWPS after PDP-5 water infiltrates through the CCL. Lithium, a monovalent cation has a low affinity for adsorption, and can be replaced in the liner by other monovalent cations as PDP-5 water passes through (Section 4.2.2). The expected maximum lithium concentration that will occur on the exterior of the PDP-5 CCL is 0.229 mg/L, which is slightly higher than that of PDP-5 water due to the CEC pre-equilibration process. The conservative case modeled causes the pre-equilibrated PDP-CCL to release a slight amount of background lithium as it is replaced by a stronger PDP-5 solution that has a higher ionic strength and greater cation content than that of the background equilibration water. No other App. IV parameters are expected to exceed the GWPS following infiltration through the PDP-5 CCL.
- <u>Scenario 2 EPA Risk Record Data (Hypothetical Worst-Case Scenario)</u>: The results of 1-D transport modeling using the hypothetical EPA 90th percentile pore water concentrations indicated that within the 50-year modeling period, breakthroughs above the GWPS for only antimony (0.04 mg/l), lithium (0.45 mg/L), and thallium (0.003 mg/L) were identified. Thallium levels exceeded the GWPS by only 0.001 mg/L.

Thallium, which also speciates as a monovalent cation in groundwater has a breakthrough similar to that of lithium and does not consider CEC in our model due to lack of reliable thermodynamic data. Therefore, thallium is essentially a conservative tracer in the models and achieves the same level outside the PDP-5 CCL as that of 90th percentile porewater (which is 4 times that of PDP-5 water).

Lithium breakthrough occurs at a level and time frame that is expected (~5 years) and continues to climb towards the porewater concentration input into the model. Note that due to the different water type and much higher lithium concentration in the 90th percentile porewater, background lithium is not released from the PDP-5 liner but rather levels continue to climb towards full strength as CEC is depleted.

Antimony breakthrough is modeled to occur quickly and achieve 90th percentile porewater concentrations through the PDP-5 CCL rapidly. However, for context, the 90th percentile porewater antimony was 12 times higher than that of what was measured in PDP-5 water. In native aquifer materials, antimony will likely attenuate quickly as it has a known affinity to adsorb to both Hfo and Hao when it is complexed as $Sb(OH)_{4^{-}}$ or $Sb(OH)_{6^{-}}$ at moderately oxidizing circum-neutral groundwater conditions. Additionally, the mineral SbO_{2} was identified by modeling to be saturated (SI>0), and therefore while not simulated as part of this evaluation, antimony precipitation is favorable.

Based on the 1-D geochemical reactive transport modeling, breakthrough concentrations above GWPS of the following Appendix IV constituents were identified for each Scenario:

- Scenario 1 PDP-5 Water (Actual Conditions):
 - Lithium 0.229 mg/L
- <u>Scenario 2 EPA Risk Record Data (Hypothetical Worst-Case Scenario):</u>
 - Lithium 0.45 mg/L
 - Antimony 0.04 mg/l
 - Thallium 0.003 mg/L

Modeled CCL breakthrough concentrations for all other Appendix IV constituents under both scenarios were less than GWPS; consequently, no adverse effects on underlying groundwater from the other Appendix IV constituents were indicated and the PDP-5 CCL was deemed to be protective of underlying groundwater for these constituents.

4.2.6 Potential Effects of CCL Infiltration Breakthrough Concentrations Above GWPS on Site Groundwater

As described earlier in this report, PDP-5 was constructed on top of closed in-place, former ash impoundments PDP-1, -2 and -3 that historically received wastewater streams and solids similar to those currently managed in PDP-5. The lateral extent of PDP-5 is wholly contained within the boundaries of the underlying closed PDP-1, -2 and -3 and any fluid that infiltrates through the PDP-5 CCL will pass into the underlying former impoundments. Based on the operating history of PDP-1, -2 and -3, the ash present in the underlying former impoundments likely contains the same Appendix IV constituents that are present in the CCR managed in PDP-5.

To assess the incremental risk to Site groundwater posed by the modeled infiltration of the Appendix IV constituents that breakthrough through the PDP-5 CCL at concentrations greater than GWPS compared to the mass of those constituents already present in the underlying closed impoundments, the annual mass flux of the breakthrough constituents through the PDP-5 CCL was compared to the estimated mass of the same constituents present in the underlying closed former impoundments. This was accomplished based on the following assumptions:

 <u>Surface Area of PDP-5</u>. The surface area of PDP-5 is approximately 40 acres based on an AutoCAD Civil 3D measurement of the PDP-5 perimeter berms as documented in the PDP-5 as-built drawings (B&M, 2016b).

- <u>Hydraulic Flux Through PDP-5 CCL</u>. The rate of fluid seepage (hydraulic flux) through the PDP-5 CCL is used to estimate the mass flux of an Appendix IV constituent through the PDP-5 liner. As discussed earlier in this document, the hydraulic flux through the PDP-5 CCL is estimated to be 6.5 X 10⁻⁷ cm/sec or approximately 0.67 feet/year.
- <u>Volume of Ash in Closed PDP-1, -2 and -3</u>. The volume of ash present in the closed PDP-1, -2 and -3 impoundments beneath PDP-5 is approximately 1,920,000 CY based on a AutoCAD Civil 3D measurement of the approximate extent of PDP-1, -2 and -3 and the approximate thickness of solids in the impoundments at the time PDP-5 was constructed.
- <u>Mass of Ash in Closed PDP-1, -2 and -3</u>. PDP-1, PDP-2 and PDP-3 historically received wastewater streams and solids similar to those currently managed in PDP-5. Consequently, the ash solids present in the underlying closed impoundments are assumed to consist primarily of scrubber gypsum and bottom ash.

Published dry unit weights of scrubber gypsum range from 60 to 65 pounds per cubic ft (lb/cf) and bottom ash range from 45 to 100 lb/cf (RMRC, 2021). For the purposes of this evaluation, an average unit weight of 80 lb/cf was assumed for the ash contained in the closed PDP-1, -2 and -3 impoundments.

Based on an estimated volume of 1,920,000 CY and an assumed average ash unit weight of 80 lb/cf, approximately 4.15×10^9 lbs (2,073,000 tons) of ash is estimated to be contained in the closed PDP-1, -2 and -3 impoundments beneath PDP-5.

• <u>Concentrations of Target Appendix IV Constituents in Closed PDP-1, -2 and -3</u>. PDP-1, PDP-2 and PDP-3 historically received wastewater streams and solids similar to those currently managed in PDP-5. Consequently, the ash present in the underlying former impoundments is assumed to contain similar Appendix IV constituents to those present in the CCR stored in PDP-5.

The following 90th percentile Whole Waste concentrations from EPA's Human and Ecological Risk Assessment of Coal Combustion Residuals (EPA, 2014) were used to estimate the concentrations of antimony and thallium present in the ash in closed PDP-1, -2 and -3 (see Appendix F):

- Antimony: 47.0 mg/Kg
- Thallium: 33.9 mg/Kg

A 90th percentile Whole Waste concentration for lithium is not included in the 2014 EPA document. The following lithium concentrations were reported for coal ash samples in publicly available documents:

- 24.6 mg/Kg (Ruhl, et.al., 2009)
- 48 mg/Kg (TDH, 2010)

Based on these data, the concentration of lithium present in the ash in closed PDP-1, -2 and -3 was estimated to be 24.6 mg/Kg.

- <u>Mass of Target Appendix IV Constituents in Closed PDP-1, -2 and -3</u>. The mass of lithium, antimony and thallium present in the ash in the closed PDP-1, -2 and -3 was estimated by multiplying the estimated mass of ash in the underlying impoundments (2,073,000 tons) by the above estimated concentration of each constituent:
 - Lithium: 102,021 lbs
 - Antimony: 194,918 lbs
 - Thallium: 140,590 lbs

Tables 9 and 10 compare the estimated annual mass flux of the breakthrough constituents at concentrations above GWPS through the PDP-5 CCL to the estimated mass of the same constituents present in the underlying

closed former impoundments for Scenario 1 - PDP-5 Water (Actual Conditions) and Scenario 2 - EPA Risk Record Data (Hypothetical Worst-Case Scenario):

- <u>Scenario 1 PDP-5 Water (Actual Conditions).</u> The annual mass flux of lithium through the PDP-5 CCL (16.7 lb/yr) represents only a small fraction (less than 0.02 percent) of the estimated mass of lithium present in the underlying closed former impoundments; consequently, the incremental risk to Site groundwater posed by potential infiltration of lithium through the PDP-5 CCL is negligible compared to the mass of lithium already present in the underlying impoundments. The PDP-5 CCL is therefore deemed to be protective of underlying groundwater under this scenario.
- <u>Scenario 2 EPA Risk Record Data (Hypothetical Worst-Case Scenario).</u> The annual mass fluxes of lithium, antimony and thallium through the PDP-5 CCL (32.9 lb/yr, 2.9 lb/yr and 0.25 lb/yr, respectively) represent only a small fraction (approximately 0.03 percent for lithium and less than 0.01 percent for antimony and thallium) of the estimated mass of lithium, antimony and thallium present in the underlying closed former impoundments; consequently, the incremental risk to Site groundwater posed by potential infiltration of lithium, antimony and thallium through the PDP-5 CCL is negligible compared to the mass of these constituents already present in the underlying impoundments. The PDP-5 CCL was therefore deemed to be protective of underlying groundwater under this hypothetical worst-case scenario.

5.0 CONCLUSIONS

This Alternate Liner Demonstration confirms that there is no reasonable probability that operation of PDP-5 will result in concentrations of Appendix IV constituents in the uppermost aquifer at levels above groundwater protection standards beyond the boundaries of PDP-5. This conclusion is supported by the following:

- PDP-5 was constructed in 2010 with a compacted clay liner (CCL) measuring 3 feet thick on the sides of the perimeter berms and 2 feet thick on the bottom of the impoundment. Extensive construction QA documentation confirmed that the constructed CCL exhibited a hydraulic conductivity of no more than 1 X 10⁻⁷ cm/sec.
- PDP-5 was constructed on top of three closed in-place, non-CCR Rule regulated, former coal ash surface impoundments (PDP-1, PDP-2 and PDP-3) that began operation in 1979. The boundaries of the closed PDP-1, -2 and -3 extend beyond the boundaries of PDP-5 and any fluid that infiltrates through the PDP-5 CCL will pass into the underlying former impoundments. Based on the operating history of PDP-1, -2 and -3, the ash present in the underlying former impoundments likely contains similar Appendix IV constituents to those present in the CCR managed in PDP-5.
- Groundwater monitoring is performed at PDP-5 under a Detection Monitoring Program implemented in
 accordance with the requirements of § 257.94. From 2017 through 2020, SSIs were periodically identified
 for boron, calcium and/or chloride in selected monitoring wells; however, ASDs prepared each year
 determined that the reported SSIs were attributed to natural variation in groundwater quality and the
 closed former coal ash impoundments beneath/adjacent to PDP-5. Detection monitoring performed from
 2017 through 2020 has not indicated evidence of a release of Appendix III constituents to groundwater
 from PDP-5.
- As specified in § 257.71(d)(1)(ii)(B), the potential for infiltration through the PDP-5 CCL was evaluated using geotechnical laboratory testing of a representative clay liner sample. Water collected from PDP-5 was used to pre-hydrate the clay liner sample and measure the hydraulic conductivity in the laboratory. Section 257.71(d)(1)(ii)(B)(4) specifies that the hydraulic conductivity test be performed until equilibrium has been achieved between the inflow and outflow of the testing apparatus for electrical conductivity and pH. Hydraulic conductivity testing is underway and test results collected thus far indicate that the hydraulic conductivity of the clay sample is below 1 X 10⁻⁷ cm/sec; however, the electrical conductivity and pH of the fluid before and after passing through the sample have not achieved approximate equilibrium. The testing will continue until the designated criteria have been achieved and the final results will be submitted to EPA under separate cover.
- In accordance with § 257.71(d)(1)(ii)(C), the USGS PHREEQC geochemical model was used to evaluate the potential transport of Appendix IV constituents through the PDP-5 CCL. Liner breakthrough concentrations of Appendix IV constituents from the model were compared to groundwater protection standards (GWPS) for each constituent. The infiltration models were run for a period of 50 years, with the modeling period beginning when the PDP-5 CCL was constructed (2010) and extending until approximately 2060 which conservatively exceeds the projected active life of PDP-5. Two PDP-5 operating scenarios were evaluated using the geochemical model:
 - Scenario 1 PDP-5 Water (Actual Conditions). Modeling was conducted to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL using source concentrations from a representative sample of PDP-5 water. Modeling of this scenario concluded that CCL breakthrough concentrations for all Appendix IV constituents except for lithium were less than GWPS and the PDP-5 CCL was therefore deemed to be protective of underlying groundwater for these constituents.

Since the modeled lithium breakthrough concentration was greater than the GWPS, the annual mass flux of lithium through the PDP-5 CCL was compared to the estimated mass of lithium present in the coal ash contained in the closed underlying former PDP-1, -2 and -3 impoundments. The annual mass flux of lithium through the PDP-5 CCL represents only a small fraction (less than 0.02 percent) of the

estimated mass of lithium present in the underlying closed former impoundments; consequently, the incremental risk to groundwater posed by potential infiltration of lithium through the PDP-5 CCL is negligible. The PDP-5 CCL was therefore deemed to be protective of underlying groundwater under this scenario.

<u>Scenario 2 – EPA Risk Record Data (Hypothetical Worst-Case Scenario)</u>. Section 257.71(d)(1)(ii)(C) stipulates that national-scale data for Appendix IV constituent concentrations sourced from the existing EPA risk record be considered in the evaluation. Under this scenario, modeling was conducted to evaluate the potential transport of Appendix IV constituents infiltrating through the PDP-5 CCL using source concentrations based on the 90th percentile pore water concentrations as listed in EPA's Human and Ecological Risk Assessment of Coal Combustion Residuals document to simulate a hypothetical worst case scenario since the EPA 90th percentile concentrations are significantly higher than the actual PDP-5 water concentrations modeled under Scenario 1. Modeling of this worst-case scenario concluded that CCL breakthrough concentrations for all Appendix IV constituents except for lithium, antimony and thallium were less than GWPS and the PDP-5 CCL was therefore deemed to be protective of underlying groundwater for these constituents.

Since the modeled lithium, antimony and thallium breakthrough concentrations were greater than the GWPS, the annual mass flux of lithium, antimony and thallium through the PDP-5 CCL was compared to the estimated mass of lithium, antimony and thallium present in the coal ash contained in the closed underlying former PDP-1, -2 and -3 impoundments. The annual mass flux of lithium, antimony and thallium through the PDP-5 CCL represents only a small fraction (approximately 0.03 percent for lithium and less than 0.01 percent for antimony and thallium) of the estimated mass of lithium, antimony and thallium present in the underlying closed former impoundments; consequently, the incremental risk to groundwater posed by potential infiltration of lithium, antimony and thallium through the PDP-5 CCL is negligible. The PDP-5 CCL was therefore deemed to be protective of underlying groundwater under this hypothetical worst-case scenario.

6.0 **REFERENCES**

- Appelo, C. and D. Postma, 2010. Geochemistry, groundwater, and pollution. 2nd Edition. CRC Press. Boca Raton, FL.
- Barnes, Virgil E., 1965. Geologic Atlas of Texas, Tyler Sheet. Texas Bureau of Economic Geology.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Breeuwsma, A. Wösten, J., Vleeshouwer, J., Van Slobbe, A., and Bouma, J., 1986. Derivation of land qualities to assess environmental problems from soil surveys. *Soil Science Society of America Journal*, *50*(1), pp.186-190.
- B&M, 2016a. Summary of Liner Construction Martin Lake Impoundments, Martin Lake Steam Electric Station, September 16.
- B&M, 2016b. History of Construction–Martin Lake Impoundments, Martin Lake Steam Electric Station, October 5.
- Davis, J. and Kent, D., 1990. Surface complexation modeling in aqueous geochemistry. *Mineral-water interface geochemistry*, pp.177-260.
- Dzombak, D. and Morel, F., 1990. Surface complexation modeling: hydrous ferric oxide. John Wiley & Sons.
- Environmental Protection Agency (EPA), 2014. Human and Ecological Risk Assessment of Coal Combustion Residuals, Office of Solid Waste and Emergency Response, Office of Resource Conservation and Recovery, ID No. 2050-AE81, December.
- EPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530-R-09-007, March.
- EPA, 1998. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems—User manual supplement for version 4.0: Athens, Georgia, National Exposure Research Laboratory, Ecosystems Research Division, 76 p. Revised September 2006
- ETTL Engineers & Consultants Inc. (ETTL), 2011. Soil and Liner Evaluation Report, Luminant Martin Lake S.E.S. Permanent Disposal Pond 5, Rusk County, Texas, March.
- Golder Associates Inc. (Golder), 2021. 2020 Annual Groundwater Monitoring Report, Martin Lake Steam Electric Station PDP-5, January.
- Golder, 2020a. Alternate Liner Demonstration Application, Martin Lake Steam Electric Station PDP-5, November 25.
- Golder, 2020b. 2019 Annual Groundwater Monitoring Report, Martin Lake Steam Electric Station PDP-5, January.
- Golder, 2019. 2018 Annual Groundwater Monitoring Report, Martin Lake Steam Electric Station PDP-5, January.
- Hem, J., 1985. Study and interpretation of the chemical characteristics of natural water (Vol. 2254). US Geological Survey.
- Karmalides, A., and Dzombak, D., 2010. Surface Complexation Modeling: Gibbsite. John Wiley and Sons, New Jersey.

- Parkhurst, D. and Appelo, C., 2013. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey
- Pastor, Behling & Wheeler, LLC (PBW), 2018. 2017 Annual Groundwater Monitoring Report, Martin Lake Steam Electric Station PDP-5, January.
- PBW , 2017a. Groundwater Monitoring System Certification, Martin Lake Steam Electric Station, Permanent Disposal Pond No. 5, October 16.
- PBW 2017b. Statistical Analysis Plan, Martin Lake Steam Electric Station, Permanent Disposal Pond No. 5, October 11.
- Ruhl, Laura, et.al, 2009. Survey of the Potential Environmental and Health Impacts in the Immediate Aftermath of the Coal Ash Spill in Kingston, Tennessee, Environ. Sci. Technol., Vol 43. April 17.
- Smith, K., 1999. Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits.
- Tennessee Department of Health (TDH), 2010. Public Health Assessment Tennessee Valley Authority (TVA) Kingston Fossil Plant Coal Ash Release, 714 Swan Pond Road, Harriman, Roane County, Tennessee, September 7.
- Texas Commission on Environmental Quality (TCEQ), 2017. Approval Closure Report, Permanent Disposal Pond No. 4/Waste Management Unit 008 dated April 25, 2017, Luminant Power, Martin Lake Steam Electric Station, TCEQ SWR No. 31277, June 14.
- TCEQ, 2015. Approval Closure Report, Waste Management Unit(s) 004,005, 006, dated December 5, 2014, Luminant Power, Martin Lake Steam Electric Station, TCEQ SWR No. 31277, March 12.

TABLES

TABLE 1STATISTICAL BACKGROUND VALUES FOR APPENDIX III CONSTITUENTSPDP 5 DETECTION MONITORING PROGRAM

Sample	Boron	Calcium	Chloride	Flouride	field pH	Sulfate	Total Dissolved Solids
Location	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
MW-17A	0.538	6.73	10.4	0.4	2.5 9.19	51.9	170
MW-18A	0.20	3.1	10.4	0.4	4.88 7.92	9.1	157
MW-19	0.782	237	57.7	0.512	4.6 8.08	672	1,380
MW-20A	0.213	25.7	12.3	0.954	3.06 8.76	148	381
PDP-22	0.411	306	32.7	1.07	4.08 8.63	216	1,780
PDP-23	0.0678	2	7.52	0.4	3.38 8.45	3.27	143
PDP-24	4.92	45.9	22.6	1.03	1.33 9.97	533	894
PDP-25	0.136	41.3	197	0.4	4.65 7.93	118	705
PDP-26	0.111	4.74	14.6	0.577	5.35 7.57	64.6	438

TABLE 2APPENDIX III ANALYTICAL RESULTS: 2017 - 2020PDP 5 DETECTION MONITORING PROGRAM

Sample	Date	Boron	Calcium	Chloride	Flouride	field pH	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	standard units	(mg/L)	(mg/L)
	09/22/17	0.402	3.1	8.3	<0.1	6.78	31.2	111
	06/14/18	0.485	6.48	9.16	<0.1	6.87	45.9	129
	09/11/18	0.523	5.06	8.82	0.179 J	5.03	43.1	137
MW-17A	05/13/19	0.497	4.88	9.18	<0.1	6.79	44.7	145
	11/07/19	0.52	5.05	8.81	<0.100	6.44	43.9	127
	05/19/20	0.521	5.09	8.74	<0.100	6.57	46.8	140
	09/25/20	0.477	5.76	10.1	<0.100	6.57	47.7	133
	09/21/17	0.0654	1.04	5.27	<0.1	6.94	3.23	45
	06/14/18	0.102	2	6.56	<0.1	6.92	3.48	71
	09/12/18	0.211	3.23	9.06	<0.1	5.69	4.82	150
MW-18A	11/7/2018 re-sample	0.128						
	05/13/19	0.117	1.01	6.17	0.138 J	6.64	3.23	73
	11/07/19	0.127	11.5	6.34	<0.100	6.23	3.67	68
	05/19/20	0.225	1.54	7.09	<0.100	6.89	5.97	86
	09/25/20	0.188	1.66	8.13	<0.100	6.78	6.03	77
	09/22/17	0.0677	2.74	5.36	<0.1	6.94	1.46 J	98
	06/14/18	0.577	133	24.4	0.216 J	6.78	328	758
	09/11/18	0.243	38	65.1	0.228 J	6.04	166	597
M/M/ 10	11/07/18			5.22		-	-	
10100-13	05/13/19	0.429	122	26.8	0.229 J	6.72	349	813
	11/08/19	0.529	77.8	49.3	0.189 J	6.87	310	844
	05/19/20	0.0724	1.49	5.84	<0.100	6.91	1.02 J	85
	09/25/20	0.412	94.6	14.3	0.111 J	6.92	160	462
	09/22/17	0.0807	17.4	12.6	0.175 J	6.71	74.2	237
	02/21/18 re-sample			10.7				
	06/13/18	0.171	24	10.9	0.672	6.72	132	250
MW-20A	09/11/18	0.141	7.16	11	0.235 J	4.70	39.1	154
	05/13/19	0.239	37.4	10.2	0.731	6.81	178	328
	11/08/19	0.132	9.9	10.2	0.465	6.51	88	205
	05/19/20	0.22	24	10.4	0.413	6.83	133	270
	09/25/20	0.107	8.94	12.6	0.132 J	6.68	54.3	162

TABLE 2 APPENDIX III ANALYTICAL RESULTS: 2017 - 2020 PDP 5 DETECTION MONITORING PROGRAM

	09/22/17	0.221	92.5	12.3	0.321 J	6.98	178	558
	06/14/18	0.115	7.78	11.8	0.239	6.63	186	491
	09/12/18	0.164	61.1	10.9	0.216 J	5.88	143	476
PDP-22	05/13/19	0.158	98.2	10.1	0.303 J	6.86	184	615
	11/12/19	0.226	34.3	12.6	0.218 J	6.93	215	482
	05/19/20	0.0646	54.9	1.06	<0.100	6.55	5.21	205
	09/25/20	0.206	25.1	12.7	0.128 J	6.73	186	398
	09/22/17	0.0463	2.34	4.48	0.147 J	6.77	1.47 J	111
	02/21/18		2.37					
	06/13/18	0.0357	2.29	6.21	<0.1	6.82	1.26 J	98
	09/11/18	0.0760	1.96	6.38	<0.1	5.32	1.52 J	98
PDP-23	11/7/2018 re-sample	0.0683						
	05/13/19	0.0628	1.89	6.98	<0.1	6.68	1.28 J	103
	11/12/19	0.0675	2.14	4.98	<0.100	6.72	1.41 J	93
	05/19/20	0.0709	2.03	6.86	<0.100	6.83	1.19 J	104
	09/25/20	0.0617	2.31	7.29	<0.100	6.74	<1.00	94
	09/22/17	3.01	25.8	17.5	0.898	6.95	231	440
	06/14/18	2.71	23.9	21.1	0.629	6.82	284	481
	09/11/18	4.08	41.6	19.4	0.832	4.20	460	760
24	05/13/19	3.23	23	21	0.871	6.95	300	537
FDF-24	11/12/19	3	21.9	20.6	0.751	6.87	295	520
	11/12/19	2.97	22.2	20.5	0.744	6.87	300	504
	05/19/20	3.17	21.4	21	0.61	6.79	286	512
	09/25/20	4.04	40.7	19.6	0.776	6.83	445	699
	09/22/17	0.133	36.8	130	0.157 J	6.81	89.1	481
	06/14/18	0.119	40.4	111	<0.1	6.78	73.4	439
	09/11/18	0.167	36.2	135	0.115 J	5.87	90.3	469
PDP-25	11/7/2018 re-sample	0.142						
	05/13/19	0.144	44.4	108	0.121 J	6.84	69	469
	11/12/19	0.184	38.6	117	<0.100	6.82	71.4	454
	05/19/20	0.202	53.7	105	<0.100	6.61	62.2	442
	09/25/20	0.174	46.3	123	<0.100	6.77	67.5	445
	09/22/17	0.0343	2.32	5.24	0.157 J	6.84	5.88	107
	06/14/18	0.0225 J	2.93	4.8	<0.1	6.89	4.27	100
	09/12/18	0.0371	2.37	4.88	<0.1	6.07	2.66 J	107
PDP-26	05/13/19	0.0528	1.9	4.59	0.217 J	6.86	2.7 J	106
	11/12/19	0.0622	2.25	4.64	0.122 J	6.77	2.1 J	102
	05/19/20	0.0538	2.09	4.52	<0.100	6.64	2.1 J	108
	09/25/20	0.0549	2.71	5.07	<0.100	6.83	1.91	92

Notes:

1. J - concentration is below sample quantitation limit; result is an estimate.

TABLE 3 APPENDIX III AND GENERAL CHEMISTRY ANALYTICAL RESULTS PDP 5 WATER SAMPLE

		в	Ca	CI	F	лЦ	SO4	тре	Ma	K Na	Alkalinity, as CaCO3				
Sample	Date		Ga		•	рп	304	103	wig	Ň	ina	HCO3	CO3	ОН	Total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(SU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
PDP-5	10/28/21	41.7	605	607	18.8	8.31	2,660	9,440	1,020	75.1	584	123	<10.0	<10.0	123

Notes:

1. J - concentration is below sample quantitation limit; result is an estimate.

2. All values reported as dissolved concentrations.

TABLE 4

APPENDIX IV ANALYTICAL DATA PDP-5 WATER SAMPLE

																		Ra 226/228
Sample	Date	Sb	As	Ba	Be	Cd	Cr	Co	F	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Comb. [^]
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(pCi/L)	(pCi/L)
GWPS:		0.006	0.01	2.0	0.004	0.005	0.1	0.006	4.0	0.015	0.04	0.002	0.1	0.05	0.002			5
PDP-5	10/28/21	0.00332	0.00352 J	0.0878	<0.0003	<0.0003	<0.002	<0.003	18.8	<0.0003	0.219	<0.00008	0.0963	1.22	0.000793 J	PEND	PEND	PEND

Notes:

Abbreviations: mg/L - milligrams per liter; pCi/L - picocuries per liter, PEND - results pending.
 ^ - Sum of Ra 226 and Ra 228 concentrations. Non-detect isotope results were assigned a value equal to the minimum detectable concentration.

3. J - concentration is below method quantitation limit; result is an estimate.

4. All PDP-5 values reported as dissolved concentrations.

TABLE 5 APPENDIX III AND GENERAL CHEMISTRY DATA PDP-5 WATER SAMPLE COMPARED TO EPA 90TH PERCENTILE POREWATER AND WASTEWATER CONCENTRATIONS

		В	в	6.	CI	F	" Ц	804	тре	Ma	ĸ	No	Alkalinity, as CaCO3				
	Date		Ca	CI	Г	рп	304	103	wig	K	INA	HCO3	CO3	ОН	Total		
Sample Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(SU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
PDP-5	10/28/21	41.7	605	607	18.8	8.31	2,660	9,440	1,020	75.1	584	123	<10.0	<10.0	123		
90th Percentile Pore Water		97.8	592	2023	21.3	NA	4,398	NA	174	221.0	3,288	NA	NA	NA	NA		
90th Percentile Wastewater		36.2	577	345	NA	NA	10,400	NA	1,990	40.0	743	NA	NA	NA	NA		

Notes:

J - concentration is below sample quantitation limit; result is an estimate.
 PDP-5 values reported as dissolved concentrations.

3. NA = Not applicable, no concentration provided.

TABLE 6

APPENDIX IV DATA PDP-5 WATER SAMPLE COMPARED TO EPA 90TH PERCENTILE POREWATER AND WASTEWATER CONCENTRATIONS

Sample Location	Date Sampled	Sb (mg/L)	As (mg/L)	Ba (mg/L)	Be (mg/L)	Cd (mg/L)	Cr (mg/L)	Co (mg/L)	F (mg/L)	Pb (mg/L)	Li (mg/L)	Hg (mg/L)	Mo (mg/L)	Se (mg/L)	TI (mg/L)	Ra 226 (pCi/L)	Ra 228 (pCi/L)	Ra 226/228 Comb.^ (pCi/L)
PDP-5	10/28/21	0.00332	0.00352 J	0.0878	<0.0003	<0.0003	<0.002	<0.003	18.8	<0.0003	0.219	<0.00008	0.0963	1.22	0.000793 J	PEND	PEND	PEND
90th Percentile Pore Water		0.04	0.78	0.21	0.001	0.06	0.20	0.05	21.3	0.01	0.45	0.000007	7.1	0.32	0.003	NA	NA	NA
90th Percentile Wastewater		0.02	0.13	0.43	0.001	0.003	0.03	0.02	NA	0.0006	1.99	0.000030	0.42	0.10	0.009	NA	NA	NA

Notes:

1. Abbreviations: mg/L - milligrams per liter; pCi/L - picocuries per liter, PEND - results pending.

2. ^ - Sum of Ra 226 and Ra 228 concentrations. Non-detect isotope results were assigned a value equal to the minimum detectable concentration.

3. J - concentration is below method quantitation limit; result is an estimate.

4. PDP-5 values reported as dissolved concentrations.

5. NA = Not applicable, no concentration provided.
TABLE 8 GEOCHEMICAL MODELING 1-D TRANSPORT RESULTS PDP-5 COMPACTED CLAY LINER

	Arsenic	Antimony	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium 226+228	Selenium	Thallium
GWPS	0.01	0.006	2	0.004	0.005	0.1	0.006	0.015	0.04	0.002	0.1	5	0.05	0.002
PDP-5 Water	2.20E-09	0.0033	0.30	1.07E-09	2.00E-06	2.85E-12	9.30E-04	4.71E-10	0.229	8.00E-05	1.01E-08	4.91	8.63E-07	7.89E-04
90th Percentile EPA Porewater	3.48E-09	0.04	0.38	1.27E-09	7.16E-04	3.79E-12	5.10E-05	8.42E-10	0.45	4.00E-05	1.32E-08	4.74	9.93E-07	0.003

Note:

1. Shaded cells indicate an exceedance of the GWPS

TABLE 9 ESTIMATED MASS FLUX OF PDP-5 LINER BREAKTHROUGH CONSTITUENTS RELATIVE TO MASS IN CLOSED PDP-1, -2 AND -3 PDP-5 WATER SAMPLE

Assumptions:

1) PDP-5 Surface Area:	40 acres
2) Seepage Rate Through PDP-5 Liner:	6.50E-07 cm/sec 0.0018 ft/day
3) Closed PDP-1, -2 and -3 Ash Volume:	1,920,000 CY
4) Ash Dry Unit Weight in PDP-1, -2 and -3:	80 lb/cf

5) PDP-5 Liner Breakthrough Constituents and Concentrations (From Geochemical Modelling):

- Lithium:

0.229 mg/L

6) Concentration of Constituents in PDP-1, -2 and -3 Ash:

- Lithium:

24.6 mg/Kg

PDP-5 Liner Breakthrough Constituent	Mass Flux of Constituent Through PDP-5 Liner (Ib/day) (Ib/year)		Existing Mass of Constituent in PDP-1, -2 and -3 (Ib)	Annual Mass Flux Through PDP-5 Liner as Percentage of Existing Mass (%)
Lithium	0.046	16.7	102,021	0.016

TABLE 10 ESTIMATED MASS FLUX OF PDP-5 LINER BREAKTHROUGH CONSTITUENTS RELATIVE TO MASS IN CLOSED PDP-1, -2 AND -3 EPA 90TH PERCENTILE PORE WATER CONCENTRATIONS

Assumptions:

1) PDP-5 Surface Area:	40 acres
2) Seepage Rate Through PDP-5 Liner:	6.50E-07 cm/sec 0.0018 ft/day
3) Closed PDP-1, -2 and -3 Ash Volume:	1,920,000 CY
4) Ash Dry Unit Weight in PDP-1, -2 and -3:	80 lb/cf

5) PDP-5 Liner Breakthrough Constituents and Concentrations (From Geochemical Modelling):

- Lithium:	0.45 mg/L
- Antimony:	0.04 mg/L
- Thallium:	0.0034 mg/L

6) Concentration of Constituents in PDP-1, -2 and -3 Ash:

- Lithium:	24.6 mg/Kg
- Antimony:	47 mg/Kg
- Thallium:	33.9 mg/Kg

PDP-5 Liner Breakthrough Constituent	Mass Flux of Through Pl (Ib/day)	Constituent DP-5 Liner (Ib/year)	Existing Mass of Constituent in PDP-1, -2 and -3 (Ib)	Annual Mass Flux Through PDP-5 Liner as Percentage of Existing Mass (%)
Lithium	0.090	32.9	102,021	0.032
Antimony	0.008	2.9	194,918	0.0015
Thallium	0.001	0.25	140,590	0.0002

FIGURES

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/9/19.

CLIENT LUMINANT GENERATION COMPANY LLC

PROJECT MARTIN LAKE STEAM ELECTRIC STATION PDP-5 ALTERNATE LINER DEMONSTRATION

CONTROL

SITE LOCATION MAP

PROJECT NO.

20142271

 YYYY-MM-DD
 2021-11-09

 DESIGNED
 AJD

 PREPARED
 AJD

 REVIEWED
 PJB

 APPROVED
 PJB

 REV.
 FIGURE

 0
 1

MEMBER OF WSP

CONTROL

PROJECT NO.

20142271

REVIEWED

APPROVED

PJB

PJB

FIGURE

2

REV.

0

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/9/19.

R	YYYY-MM-DD		2021-11-09	
	DESIGNED		AJD	
	PREPARED		AJD	
	REVIEWED		PJB	
	APPROVED		PJB	
		REV.		FIGURE
		Δ		3

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/9/19.

PROJECT NO. CONTROL 20142271

Ē

Last Edited By, adiamond. Date: 2021-11-09. Time:3:35.32 PM. | Printed By, adiamond. Date: 2021-11-09. Time:3:4302 PM Path: \u00der: adsicomptexdatioffice(TexarkanaPhojects. - Round Rock\. 2220:0142271 - Lumiant/PRODUCTION/PDF5 | File Name: 6-Sample Locativ In IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI A

c)

CLIENT LUMINANT GENERATION COMPANY LLC MARTIN LAKE STEAM ELECTRIC STATION

CONSULTANT

GOLDER MEMBER OF WSP

3 s)	60 4	0	50		
1					
		GWPS			
	30 4	10	50		
)	PROJECT ALTERNATE LINE MI SES - PDP-5	R DEMONSTRA	ATION		-
- :	TITLE Antimony, Arseni 1-D Transport Mo	c, Barium, and del Results for	Beryllium (a-d) PDP-5	REV.	- FIGURE
	20142271	1000		A	7

	GWPS	
30 4	0	50

c)

	GWPS	_
30 4)	40	ا 50

| FILE NAME: Table 8 and Figures 7-14 Mod

CLIENT LUMINANT GENERATION COMPANY LLC MARTIN LAKE STEAM ELECTRIC STATION

CONSULTANT

GOLDER MEMBER OF WSP

CLIENT LUMINANT GENERATION COMPANY LLC MARTIN LAKE STEAM ELECTRIC STATION

CONSULTANT GOLDER MEMBER OF WSP

1: https://golderassociates.sharepoint.com/sites/126056/Project Files/6 Deliverables | FILE NAME: Table 8 and Figures 7-14 Model Results.xlsx

Thallium

40

50

Arsenic

20

Time (years)

| FILE NAME: Table 8 and Figures 7-14 Mod

0.005

0

0

10

c)

PROJECT NO.	PHASE	REV.	FIGURE
20142271	1000	Α	11

a)

c)

CLIENT LUMINANT GENERATION COMPANY LLC MARTIN LAKE STEAM ELECTRIC STATION

CONSULTANT

GOLDER MEMBER OF WSP

a)

PROJECT ALTERNATE LINER DEMONSTRATION MLSES - PDP-5

TITLE Selenium & Thallium (a-b) 1-D Transport Model Results for EPA Porewater

	BHASE	DEV/	FIGURE
20142271	1000	Δ	11
20142271	1000	A	14

APPENDIX A

CCR Monitoring Well Logs

Luminant

Log of Boring: PDP-22

		Lum	nina	nt	Log of	Boring: PD	P-22
Mar	tin Lake Stea	m Electric	Station	Completion Date:	9/9/2015	Drilling Method:	Sonic
	Tatur	n, TX	0.0.001	Drilling Company:	Walker-Hill Environmental	Borehole Diameter (in.):	6.5
				Driller:		Total Depth (ft):	60
	DRW/ Drojoct	No 5164		Logged By:	20 14IVI Rvan Francis	Northing	
	PBW Project	10. 51041	D	Sampling Method:	4"x10' Core barrel	Fasting:	
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS		Lithologic De	escription	
0 -			SP	(0 - 3) Fine SAND, t	an, dry, very soft, small iro	n concretions, grass roots	
4		8.0/10.0	CL	(3 - 10) Sandy CLA	Y, red/orange mottled, dry,	firm, moderate cementatior	n, flat to
8 — - -							
12 -		10 0/10 0	E C	(10 - 20) Silty CLAY	with minor sand, dry, firm,	moderate cementation, flat	to
16 -			, en	content with depth, f	transition from red/gray at ?	10' to tan at 20'	ny sanu
20 –							
24 —		10.0/10.0	SM	(20 - 28) Sandy SIL grass lense (fill), tra	T, gray and tan, dry, firm, n nsition to gray at 26'	noderate cementation, flat t	o subrounded,
28 –				(28 - 30) Silty SAND), iron-rich, dry, soft, weak	cementation, subrounded, s	sharp contact
32 –		10.040.0		· · ·			
36 —		10.0/10.0					
40 —			SC	(30 - 53) SAND, gra plasticity at 30', tran	y with small streaks and irc sition to low plasticity at 40	on at 32', moist to wet, soft, ', minor clay content	moderate
44 — 		10.0/10.0					
48 —							
52 -				·			
56 -		10.0/10.0	CL	(53 - 60) Silty CLAY hard gray/dark gray	, gray, dry, firm, moderate clay at 56'	cementation, dry, flat, trans	ition to very
60 -	1		$\overline{\overline{)}}$				
	PBV	W	N 1	lotes: . This log should not be	e used separately from the	report to which it is attache	d.
Pasto	r, Behling & V	Wheeler, L		Vell Materials		Annular Materials	
2201 I Tel (512)	Double Creek I Round Rock, T) 671-3434 Fax	or., Suite 40 X 78664 x (512) 671	1-3446	0-35) Casing, 2" Sch 40 F 35-60) Screen, 2" Sch 40	JT PVC FJT PVC, 0.010" slot	(0'-31') Grout (31'-33') Bentonite pellets (33'-60') 20/40 sand	

		Lum	ina	nt	Log of	Boring: PD	P-23
Mar		na Ela atria	Otation	Completion Date:	9/10/2015	Drilling Method:	Sonic
Mar	tin Lake Steal Tatur	m Electric n TX	Station	Drilling Company:	Walker-Hill Environmental	Borehole Diameter (in.):	6.5
	i atai			Driller:	Timmy Beach	Total Depth (ft):	50
	DDW/ Droject	No 5164	5	Driller's License:	5814M Ryan Francis	IOC Elevation (ft. AMSL):	
		110. 5104	<u> </u>	Sampling Method:	4"x10' Core barrel	Easting:	
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS		Lithologic De	escription	
0 -			())))	•			
4		10.0/10.0					
12 —				(0 - 30) Sandy CLA	Y brown to red to tan dry	soft to firm, weak cementation	on iron rich at
- 16 — -		10.0/10.0		5', none to moderat banding and iron no banded gray, tan, a	e plasticity, black mottling a odules with increasing sand nd red sandy clay (21' - 30'	and some organics present a cotent at 16', microlaminate	t 10', iron d iron rich
20 —			CL	4 4 4			
24 — 		10.0/10.0		4 4 4			
28 – 				• • •			
32 —				(30 - 39) CLAX ara	w micro laminated minor s	and content dry firm to har	h weak to
36 — 		10.0/10.0		moderate cemental	ion, low plasticity		, weak to
40 —				(39 - 41) Sandy CL	AY, light gray, dry, firm, wea	ak cementation, medium pla	sticity
- - 44 —			sc	(41 - 44) Clayey SA plasticity	ND, wet, soft, weak cemen	tation, subrounded, medium	to high
-		10.0/10.0					
48 —) CL	(44 - 50) Sandy CL	AY, dark gray, dry, hard, mo	oderate cementation	
52 -	-						
	PB	W	N 1.	otes: This log should not b	e used separately from the	report to which it is attached	
Pasto 2201 I Tel (512)	r, Behling & V Double Creek E Round Rock, T) 671-3434 Fax	v heeler, L Dr., Suite 40 X 78664 x (512) 671	LC W 004 (0 (3 (3	/ell Materials)-35) Casing, 2" Sch 40 F (5-45) Screen, 2" Sch 40	-JT PVC FJT PVC, 0.010" slot	Annular Materials (0'-31') Grout (31'-33') Bentonite pellets (33'-45') 20/40 sand	

Luminant Log of Boring: PDP-26 Completion Date: 9/9/2015 Drilling Method: Sonic Martin Lake Steam Electric Station Drilling Company: Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: **Ryan Francis** Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 SP. (0 - 3) SAND, tan, dry, very soft, weak cementation 4 SC (3 - 6) Clayey SAND, dry, firm, black lignite present 10.0/10.0 (6 - 9) CLAY with minor sand, red, moist, firm, medium plasticity, smear zone black lignite 8 12 SĊ (9 - 16) Clayey SAND, tan, moist, soft, low plasticity, more clay content with depth 10.0/10.0 16 20 24 10.0/10.0 (16 - 40) CLAY, tan, micro laminated orange and gray, moist, soft, medium plasticity, dry CL and silty clay (19'-27'), micro laminated gray and dark gray (27'-36'), increasing sand 28 content (30'-36'), organics layer (36.5'-37'), high iron content (39'-40') 32 10.0/10.0 36 40 . ۰. 44 SP (40 - 48) SAND, tan, medium, moist to wet, soft, subrounded 10.0/10.0 48 (48 - 50) CLAY, gray, micro laminated, dry, firm, moderate cementation CL 52 Notes: PBW 1. This log should not be used separately from the report to which it is attached. Pastor, Behling & Wheeler, LLC Well Materials Annular Materials 2201 Double Creek Dr., Suite 4004 (0'-35') Grout (0-39) Casing, 2" Sch 40 FJT PVC Round Rock, TX 78664 (39-49) Screen, 2" Sch 40 FJT PVC, 0.010" slot (35'-37') Bentonite pellets Tel (512) 671-3434 Fax (512) 671-3446 (37'-49') 20/40 sand

iort	EN	VIRC	08-138	ENT	AL		-	Boring/Well Number:	MW-17	A
iect	Name		Martin L	ake S	ES		-	Date Dnilled:	October	1,2008
atio	n:	-	8850 FI	M 2658	3 Tatum	TX		Casing Type/Diameter:	PVC/2*	ID
ling	Method	d:		HSA				Screen Type/Diameter.	8/15 Gr	ade Silica Sand
npli	ng Meth	hod:		CT			_	Grave Pack Type.	Benton	to Pellets
und	Eleval	Elevation:	001	384.03	mel			Depth to Water/Date:	26.62' 8	BTOC/10-09-2008
oner	Casing thy:	Elevan	00.	T. Ripl	ev	-		Ground Water Elevation/Date:	360.91	msl/10-09-2008
mar	KS:							Drilling Co./Driller:	SCI/M	I. Bridges
(wdd) nid	Blow Counts	Recovery (%)	Sampling Method	Sample	Cepth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
A	NA	NA	СТ	NA				See MW-17B boring log for Lithologic Description		Concrete V
										Co
					1.00					
						1				Bento
1										Pellets to
									40.0	
					10				10.0	
					-					- 30' Cas
					121					
						4				
					20				20.0	
								2.23		
								又		
				1.1						
					-					
					30				30.0	
										20' Scr
										with 2*
					-					
					40				40.0	Sand Bad
										of Ann
										Space
										20 10
					-	1				
								The boring was terminated and the well was set at 47' bgs. The well	11.15	
					1			was completed with a protective stickup which requires		

Þ

I

4	7		ENT (or.		-		BORING/WELL CONSTRUCTION LOG		
Project	EN Numbe		08-138	517 <u>EN</u> 1 8	TAL			Boring/Well Number:	MW-1 Octob	17B
Project	Name:		Marun I	LBK8 C	P Tatur	TY		Casing Type/Diameter:	PVC/2	2" ID
Locatio	n: Motho	d.	6600 F	HSA	o ratun	. 17		Screen Type/Diameter:	PVC/	0.01*
Samuel	Met Met	u. hori		CT				Gravel Pack Type:	8/16 (Grade Silica Sand
Groupe	Fleva	tion:		384.6	3' msl			Grout Type:	Bento	onite Pellets
Top of	Casino	Elevat	ion:	387.60)' msl			Depth to Water/Date:	30.52	"BTOC/10-09-2008
Logger	by:			T. Rip	ley			Ground Water Elevation/Date:	357.0	8' msl/10-09-2008
Remar	ks:							Drilling Co./Driller:	<u>SCI/</u>	M. Bridges
(mqq) Olq	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
			CT.	A1.A		GM		GRAVELLY road base		Cement/
NA	NA	50	СТ	NA	5	SC		Dry, dense, reddish-brown, CLAYEY SAND	5.0	Concrete Well Cover
		50			10	CL		-stringer of reddish-brown, fine-grained SAND Dry, very stiff, reddish-brown, SANDY CLAY -molst	10.0	Bentonite Pellets to 57
		70				SM		✓ Wet, dense, reddish-brown, fine-grained SAND Molst, very stiff, light gray, CLAY with iron staining		62' Casing
					15	0		Molet year stiff brown and light gray. Sil TV CLAV	15.0	
		90				UL				
					20	SC		Wet, loose, reddish-brown CLAYEY SAND	20.0	
		90				ML		wer, mealum sun, reduisti-brown and gray, SILTT CLAT -with some iron deposits Wet, soft, reddish-brown and gray, CLAYEY SILT		
					25				25.0	

e

I

I

,

ject Numb	er: 08-13	38			Boring/Well Number: Date Drilled:	October 1, 2008
Diect Name	Recovery (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Depth SE2	(ft. BGL) U.S.C.S	iraphic Log	Lithologic Description	S C Well Diagram
	 20 20 20 90 90 90 90 90 90 90 		30 30 35 ML 40 40 45	Creating and Cre	-less CLAY -more CLAY -heavy iron deposits Dry, very stiff, gray, CLAYEY SILT Moist to wet, dense, gray, SILT	30.0 35.0 40.0 45.0
	100				-hard, shaley -stringer of coal (4")	
	80		50		-stringer of very dense, gray, SILTY SAND (fine-grained SAND) -loose/soft with some CLAY	50.0

,

۱

oject	EN Numbe	VIR(er:	<u>DNM</u> 08-138	<u>EN 1</u> 8				Boring/Well Number:	MW-17 Octobe	B ar 1, 2008
(mdd) (IIA	Name: Non Counts	Recovery (%)	Martin Method Method	Lake S and mes	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
	<u></u>	100			60			-stringer of coal (4*)	60.0	20' Sor
		100			65			-dense, not shaley, low CLAY	65.0	with 2"
		100			70				70.0	Sand Ba of Anr Space 57' to
		100	-		75				75.0	
			_			1		The boring was terminated and the well was set at 79' bgs. The well was completed with a protective stickup which requires	ī 80.0	

	GR	EE	N.S	STA	R			BORING/WELL CONSTRUCTION LOG		
11	ENT	IRC	NM	<u>ENT</u>	AL			Boring/Well Number:	MW-18	5A
iert	Name	·	Vartin L	, ake Sl	ES			Date Drilled:	Octobe	ar 2, 2008
ation	Y.		3850 FI	4 2658	Tatum	TX		Casing Type/Diameter	PVC/0	.01*
ling	Method	:		HSA				Gravel Pack Type:	8/16 G	irade Silica Sand
ound	Elevati	on:		410.83	' msi			Grout Type:	Bentor	BTOC/10-09-2008
o of (Casing	Elevatio	SUL:	414.43	' msl			Ground Water Elevation/Date:	371.20	3' msl/10-09-2008
10ed	by:			T. Ripl	θγ			Drilling Co./Driller;	SCI/N	V. Bridges
Ê d	Counts	covery (%)	mpling	ample	BGL)	S.C.S	phic Log	Lithologic Description	Contact Depth	Well Diagram
2	Blow	e NA	S S CT	03 NA	υĘ.))	Ga	See MW-18B boring log for Lithologic Description		Concrete W
	NA	110								Со
					10				10.0	
										Bento
										Pellets to
					20				20.0	
										50' Ca
					30				30.0	
			1							
					40	-		⊻	40.0	
					50				50.0	0 20' Sc with 2"
						-				
					60				60.0	o Sand Ba of An Space
										45' 1
						<u> </u>	4	The borion was terminated and the well was set at 67' hos. The wa		

	EN	VIRC	<u>ÓNM</u>	ENT	TAL			Paring Molt Number	MW-18	8
ect	Numbe	ər:	08-138	3				Date Drilled:	Octobe	r 2, 2008
ject	Name:		Martin L	ake S	ES	TV		Casing Type/Diameter:	PVC/2*	'ID
catio	n:	d-	8850 F		5 Fatum	, 1		Screen Type/Diameter:	PVC/0.	01"
mali	na Met	u. bod:		CT				Gravel Pack Type:	8/16 Gr	rade Silica Sand
ound	Eleva	tion:		410.83	3' msl			Grout Type:	Benton	ite Pellets
p of	Casing	Elevati	ion:	414.25	5' msl			Depth to Water/Date:	360.84	'mel/10-10-2008
ggeo	i by:			T. Rlp	ley			Dilling Co /Driller:	SCI / N	1. Bridges
mar	KS: 'n				г — т		6	Dining Co. Danet.		
(mqq) Uiч	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Lo	Lithologic Description	Contact Depth	Well Diagram
4A	NA		СТ	NA		SM		Dry, medium dense, brown, fine-grained SAND		Concrete We
		30						-light brown		Bentoni Pellets to 7
					6			-stringer of coal combustion by-product	5.0	
						SC		CLAYEY SAND fill with partially burned lumber, tin		
		10								
			1		10			-reddish brown	10.0	78' Casi
								-no waste		
		70		1				-brown, no CLAY		
								-stringer of stiff, brown, SILTY CLAY		
			-		15	SM		Dry, dense, reddlsh-brown, very fine-grained SAND	15.0	
		100								
			-		20				20.0	
		60						-with some light gray and brown		
						1				
			1	1	1	1		H-loose, light gray and brown	25.0	R101 1010

roject N	ENV.	IRO	NM. 08-1388	EN'	TAL			Boring/Well Number: Date Drilled:		MW-18B October 2,	2008
(mdd) Cl	ow Counts light	(%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	raphic Log	Lithologic Description		Contact Depth	Well Diagram
<u>u</u>	<u> </u>										
		100						-medium dense			
								-dense			
	-				30					30.0	
		60						-stringer of very dense, light gray, CLAYEY SILT			
								wet	∇		
	-				35			-wei		35.0	
						CL		Molst, very stiff, brown and gray SILTY CLAY			
		100									
					40					40.0	
								-wet, soft, reddish-brown and gray			
		100						-interbedded layers of CLAY/SILT			
		100									
	-				45			-moist		45.0	
								-medium stiff			
		90									
					50	ML		Wet, soft, brown CLAYEY SILT		50.0	
						MI		Moist dense grav SII T	<u>.</u>		

Troject Number	VIRONME 08-1388	NTAL	Boring/Well Number:	MW-18B October 2, 2008
roject Name: (mdd) O	Martin Lak	ample Depth Sectors S.C.S S.C.S Sectors Dhic Log	Lithologic Description	ਲ ਦੂਰੇ ਇੰਟਰ Well Diagram
PID (f	100 100 100		-shaley -not shaley Wet, medium dense, gray, fine-grained SAND Dry, dense, gray, SILT (shaley)	60.0
	100	75 SP 	wet, medium dense, gray, fine-grained SAND -interbedded layers of shaley SILT and wet SAND (4*)	75.0

F E Z	Martin				Date Dellar	Octobe	r 2, 2008
Kecove	(%) Sampling Method	Lake S ejdweS	Depth (n. BGL)	U.S.C.S	Lithologic Description	Contact Depth	Well Diagram
			90		-fewer/narrower SAND layers	90.0	

1	GR	REE	NS	STA	R					
	EN	/IRC	NM	ENT	'AL			Boring/Well Number:	W-19	h
roject	Numbe	<u>r: (</u>	8-1388	aka S	<u></u>			Date Drilled:	Septer	10er 30, 2000
roject	Name:		Martin L	A DRSP	L Tatum	TX		Casing Type/Diameter:	DUCIO	01"
ocation	n: Mothori		1000	ISA				Screen Type/Diameter:	20/40 0	Grade Silica Sand
innary Samolir	ned loc	hod:		CT				Gravel Pack Type.	Benton	lte Peliets
Ground	Elevat	ion:		367.84	' msl			Grout Type.	13.89'	BTOC/10-09-2008
op of	Casing	Elevati	on:	371.23	' msl			Ground Water Elevation/Date:	357.34	' msV10-09-2008
ogged	i by:			T. Ripl	өү			Drilling Co./Driller:	SCI/N	A. Bridges
(undd) C	w Counts :	(%)	sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	raphic Log	Lithologic Description	Contact Depth	Well Diagram
NA	NA	<u>ل</u> ت	ст	NA		SC		Moist, medium dense, reddish-brown, CLAYEY SAND (fine-grained SAND)		Concrete Well Concrete Well Cover
		90				CL		Molst, soft, reddish-brown, SANDY CLAY Moist konse reddish-brown, fine-graIned SAND		Pellets to 9
					5	Gr.		-gray	5.0	
		60						CLAY (fine grained SAND)		13' Casin
					10			-stiff -stiff	10.0	
						CL		Molst, very stiff, light gray, SILTY CLAY		
		100				SC		Moist, dense, gray and reddish-brown, CLAYEY SAND (fine-graine SAND	d 15.0	0
			-		15	SP		Wet, loose, light gray and reddish-brown, fine-grained SAND		15' Scre with 2" E C
		70				-				
		-	_		20	sc		Wet, medium dense, light gray and reddish-brown, CLAYEY SAND (fine-grained SAND)	20.	.0 Sand Bac of Anni Space fi
		10	b					-stringer of dense	-	9' to
					25	- ML		Moist, very stin, gray GLATET SILT with some non standing	25	5.0
_								The borng was terminated and the was was set at 20 eys. The was scompleted with a protective stickup which requires anyroximately 3 feet of additional casing above grade.		

.

.

Project Project ocatio Drilling	EN Numbe Name: n: Method		08-1380 Martin I 8850 FI	Ake S M 265 HSA	ES 8 Tatum	, TX		Boring/Well Number: Date Drilled: Casing Type/Diameter: Screen Type/Diameter: Cravel Pack Type:	MW-20 Septer PVC/2* PVC/0. 20/40 (A hber 30, 2008 ID 01" Srade Silica Sand						
Sampli	ng Metr I Elevat	ion:		395.95	5' msl		-	Grout Type:	Benton	ite Pellets						
op of	Casing by:	Elevation	on:	398.34 T. Rip	i msi ley	-		Ground Water Elevation/Date:	369.65	msl/10-09-2008						
Remar	ks:						-	Drilling Co./Driller:	SCI/N	I. Bridges						
(mqq) CII	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (fl. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram						
NA	N	NA	СТ	NA				e MW-20B boring log for Lithologic Description		Concrete W Concrete W Co Benior Pellets to						
					10		10.0	24' Gat								
					20				20.0							
					30			Z	30.0	20' Scr with 2' 1						
										Sand Bac of Annu Space fr 19' to						
											40				40.0	
							_	The boring was terminated and the well was set at 41' bgs. The well was completed with a protective stickup which requires	111							

.

oject N	umbe	r. I	08-138	8				Boring/Well Number:	MW-20E	3	
antine.	oject Name: Martin Lake SES							Date Drilled:	September 30, 2008		
cation: 8850 FM 2658 Tatum, TX					8 Tatum	<u>n, TX</u>		Screen Type/Diameter:	PVC/0.0	01"	
anny M	Meth	od:		CT/F	A			Gravel Pack Type:	20/40 G	rade Silica Sand	
round Elevation: 395.95' msl				5' msi			Grout Type:	Bentonite Pellets			
p of Ci	asing	Elevati	on:	398.94	1' msl			Depth to Water/Date:	36.42 8	msl/10-09-2008	
marks	р <u>у:</u> Е			1. rsp	ley			Drilling Co./Driller:	SCI/M.	Bridges	
PID (ppm)	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram	
NA	NA		СТ	NA		SP		Moist, loose, brown, SILTY SAND (fine-grained)		Concrete W	
								-stringer of coal combustion by-product		Cov	
								-stringer of moist, soft, light gray to brown SILTY CLAY		11. 110	
		100									
	1										
								with some CLAY			
					5	00		Malet Joong Hight grov flop argined SAND	5.0		
	1					SP		IMoisi, ioose, iigni gray, iine-grained SAND	E		
										Bentor	
	1									Pellets to	
		100									
					 		m	Mojet medium stiff brown SANDY CLAY (fine-grained SAND)			
							////		8		
					10		V///	-light gray and reddish-brown	10.0		
	1				****	1			1		
							////	_	2010		
							/////	V	-		
Í					}	or			E		
		100							100		
						1			100	48' Cas	
					15			-with some light gray	150		
					-13				10.0		
								-light gray and reddish-brown			
						CL	V///	Moist, stiff, light gray, reddish-brown, and brown, SANDY CLAY			
						1	V////	(fine-grained SAND)			
		100					<i>\////</i>				
					 	ł	V////		Ê		
							V////				
						1	V////	1			
					20	Į	<i>\////</i>	-stringer of hard	20.0		
							V////	1			
					—	1	<i>\////</i>	-no brown			
							V////		E		
		100				L	<u>////</u>				
		.00			L	sc		Moist, dense, light gray to reddish-brown, CLAYEY SAND (fine-	E		
								grained SAND)	8		
						1	****				
					25		****	-gray	25.0		
						1	****				
						L	8888				
						CL	V///	Moist to wet, stiff, gray, SILTY CLAY			
					 		V////				
		100					V///				
						1	V////				
							V///				
						1	V////				
					30		<u> </u>		30.0	82A 8228	

•
	EN	$\frac{1RC}{r}$	08-138	E_{IV}	AL			Boring/Well Number:	MW-20	18 nher 30, 2008
Project 1	Varne:	<u>}</u>	Martin	ake S	ES F d	S.	1 Cog	Date Drifed:	ntact apth	Well Diagram
P1D (pp	Blow Co	Recov (%)	Sempli Methy	Samp	(∰ Dept	U.S.C	Graphic		8ª	
								-hard		
		100						Maiet bard pray and reddish-brown, SILTY CLAY		
						UL.		-stringer of hard red SANDSTONE GRAVEL (coarse)		
					35	SP	<i></i>	Wet, medium dense, reddish-brown, fine-grained SAND	35.0	
		60						-stringer of wet, soft, brown, CLAY with some angular, red GRAVEL		
			4		40			-stringer of wet, soft, dense, gray, CLAYEY SAND	40.0	
						4				
		100								
						ML		Dry, medium stiff, dark to light gray, CLAYEY SILT	45	0
			-		45	1				
		100) 			-				
					50	-			50.	.0 20'
								-stringer of molst, medium dense, gray, fine-grained SAND -stringer of hard (SHALEY)		
		10				-		-stringer of coal		
			-		-	-				
					55				55	.0
						_				
		90								
			E	_]	_	Refusal at 59' bgs, advanced to 65' bgs with flight auger instead o	F	
					- 60			sample tube.	60	Sand
						-				Spa 4
						_				

APPENDIX B

Photograph of Modified ASTM D7100 Hydraulic Conductivity Testing Apparatus

Appendix B Photograph of Modified ASTM D7100 Hydraulic Conductivity Testing Apparatus

APPENDIX C

PDP-5 CCL - Geotechnical Laboratory Reports

PAGE 1 OF 1

GRAIN SIZE DISTRIBUTION ASTM D1140

PROJECT NAME Martin Lake PDP-5 CLIENT _Luminant (Vistra Energy) PROJECT NUMBER 20142271 **PROJECT LOCATION** U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 1/23/8 U.S. SIEVE NUMBERS HYDROMETER 3 6 810 14 16 20 30 40 50 60 100 140 200 100 Ш . 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** GRAVEL SAND COBBLES SILT OR CLAY medium coarse fine coarse fine Comp. Separ. Soak Prior Sieve? Sieve Time Test.? Test Description Tech. Review BOREHOLE DEPTH Classification Method Proced. Notes Date • LTP-1 0 ft SANDY LEAN CLAY (CL) В Oven No 16 hrs. No 10/01/2021 MR JBF BOREHOLE %Clay DEPTH D100 D60 D30 D10 %Gravel %Sand %Silt LTP-1 0 ft 4.75 0.0 37.9 62

14:45 - L:\2021 FILE FOLDERS\MARTIN LAKE PDP-5_LTP\LONG TERM PERM2021.GPJ - GINT STD US LAB.GDT - 11/3/21 (FEET) 2016 SIEVE

APPENDIX D

PDP-5 Water Sample Laboratory Analytical Reports

Surfae (Groundy	ممي ^{لور} wate r Samp	le Collection		Page of		GOLDER
Project/Pha	ise 201422.	71	Equipment Decon	Dedicated equipment	Depth to Water	ft. BMP
Site Locatio	in <u>PDP-5</u>		_	Decon between locations	Casing Stickup	ft.
Date	1012812	.)	Reference Point	\Box Top of casing	Depth to Water	ft. BGL
MW-ID.	PDP-5		Location	🗆 Other	Total MW Depth	ft. BGL
Sample ID	POP-	5	_ Water Quality		MW Diameter	inches
Pump	🗆 Waterra	□ Submersible	Meter Model	Horiby	MW Volume	gallons
	Peristaltic	Bladder	Unit Number		Pump Intake Depth	ft. BGL

Standard volume capacity of monitoring wells: Schedule 40 PVC (1-inch OD, 0.04 gallons/foot; 2-inch OD, 0.16 gallons/foot; 4-inch OD, 0.65 gallons/foot)

Time	Purge Rate	Cumulative Purge Volume	Depth to Water	Temp (°C)	рН	Conductivity (μS/m or mS/cm)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	Turbidity (NTU)	* 0-100 / winds
	(L/min)	(L)	(ft)			□ not measured	🗆 not measured	🗆 not measured		Condition
11:10				18.77	6.2.8	9.26	6.22	55	0	caused
						ť				to cont.
										be distable
					. (hear bar
	· · · ·								1	1
Purging was based on:	completed	Astabilization of v	Nater quality	parameters	I removal of	three well volumes □ rer	noval of at least one half	well volume (low yiel	d well)	

	Bottles Co	ollected		Filtration	Preserved	Notes and Observations
Time	Volume	Composition (G / P)	No.	(10µm / 45µm)	(type)	(quality control sample, other)
11:60	212 634143 12502		5	🗆 filtered 🖉 unfiltered	Nore	
				□ filtered □ unfiltered		

Notes: record time at which purging is started. For low flow sampling, recommended stabilization criteria: temp ± 0.5°C; pH ± 0.1 units; conductivity ± 3%; DO ± 1 mg/L; ORP ± 10 mV; for at least three successive measurements that are made every 3-5 minutes with <1 foot of stable draw down.

Unless otherwise noted, groundwater sample collection was completed in accordance with the applicable requirements of Golder	's Quality Assurance Program and Standard
Operating Procedure 🗌 9 Conventional Groundwater Sample Collection 🗌 10 Low Flow Groundwater Sample Collection.	
Field Team Leader Daniel Stagy	
name	signature

November 04, 2021

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX (512) 671-3446 RE: Martin Lake PDP5

Order No.: 2110266

Dear Will Vienne:

DHL Analytical, Inc. received 1 sample(s) on 10/29/2021 for the analyses presented in the following report.

Revision Number 1 for Work Order 2110266: This revision consists of adding Alkalinity to sample, per the client's request. Please replace the original Data Report with this revision.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

Table of Contents

Miscellaneous Documents	
CaseNarrative 2110266	
WorkOrderSampleSummary 2110266	
PrepDatesReport 2110266	
AnalyticalDatesReport 2110266	
Analytical Report 2110266	
AnalyticalQCSummaryReport 2110266	
MQLSummaryReport 2110266	

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: *www.dhlanalytical.com* E-Mail: *login@dhlanalytical.com*

№ 86962 CHAIN-OF-CUSTODY

CLIENT: <u>Golder Associator Tuc</u> . ADDRESS: <u>5416 Plaza prize</u> , <u>Texarkance</u> , <u>TX 75503</u> PHONE: <u>903-794.0627</u> , FAX/E-MAIL: DATA REPORTED TO: <u>Pat Behlviz</u> ADDITIONAL REPORT COPIES TO:												DA ^T PO PRO CLE	TE: _ #: _ OJE(ENT	° 2 e CT L(PRO	JEC	2 7 TIO T #:	2 7 N C 2	<u>ا</u> R N	IAN 12	1E: 27	_D _/	HL' Ker	WO <i>Fi i</i>	RK	OR Læi COI		? #: 	CI DR:	РА 21 21	GE 102 15	1 26	OF G	1			
Authorize 5% surcharge for TRRP Report? Yes No Field Sample LD	S=SC W=W A=AI L=LIC SE=S DHL Lab #	DIL P /ATER SI R O 2UID Si EDIMENT	=PAIN L=SLU =OTH O=SO	IT IDGE IER LID	Container	# of Containers	PR	ESE [©] ONH				A.			THE ST ST							C C C THE C C C	C C C C C C C C C C C C C C C C C C C		Contraction of the second seco				2 C C + 1 2 C - 1 2 C	22 27 27 29 29 29 29 29 29 29 29 29 29 29 29 29			NOT	FS		
		100 A GIN										<u>V°</u> Fi	2~2		<u>~7</u>	<u>?</u> ? °	<u>vy</u> ~	<u>Z</u> °	\sum_{k}	$\sum_{i=1}^{k}$	12	$\underline{\mathbf{x}}_{\mathbf{c}}$			<u>/</u> *	\sum	<u>×</u>	\lfloor		\mathbf{F}	v				•	4
POPS	01	10128121	11:00	w	plathe	19		\neg		-					+			_	_	-($\overline{)}$	1						-	F	C	dei	n,	naq	neer	un.	-
					1					-					+																AA	<u>(111</u>	<u>`</u>	s och	un	+
															╉				_												<u>6 A</u>	An T	d f	Un V	. V. (<u>e</u>
										_				+-	+																5/2/(b. filto	<u> </u>		on V	Stor	-
															1												-			Di	ssolve	d me	ρμρ tals	JD 10	$\frac{5 \tan \theta}{0/29}$	$\frac{e^{\kappa}}{21}$
															-													—								4
															1																					1
															\uparrow												\vdash									1
					<u></u>									1																						1
																																				1
																																				1
																																				1
															Τ														ĺ							
RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)		(0) 2	DATE/ DATE/ 9/21 DATE/	тіме <u>Ка</u> : 00 Піме <u>102</u>		D BY: D BY: D BY: D BY:	(Sign (Sign V (Sign	ature		6	\geq	\$			TUI RUS 1 DA 2 DA	RNA H	CAI	UNC LL F LL F) TII IRST IRST	ИЕ - Г	L/ RE CL	BO CEI JST(RA1 VIN DDY ER:	G TE	YU MP ALS:	SE (:				THE Q	RM #: (ÎNTA EX	CT CT	8 П N 5 с	- OT U:	SED	
	F	אראט און און	<u>ما ه</u>	5 00 000	-h □ 5	Petur	'n								NOF OTH	ER (CO	JRIE ND I	ER D DFI		VER RED	Y	C	HL	COC	Rev	FEE	3 201	0		
												3		I		1 _E	exca	φŧ	1 coe	fen	v											•				

Eric Lau

From:	John DuPont
Sent:	Tuesday, May 28, 2019 11:35 AM
To:	Eric Lau
Subject:	FW: CCR Analysis

<u>Appendix III Parameters:</u> Metals (Ca and B) Anions (Cl, F, and SO4) TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl) Ra-226 Ra-228

From: Vienne, Will [mailto:William_Vienne@golder.com]
Sent: Tuesday, April 09, 2019 12:48 PM
To: John DuPont <dupont@dhlanalytical.com>
Subject: CCR Analysis

鹿山

5

З,

	Sample	Receipt Check	klist		
Client Name Golder			Date Receiv	ved: 10/29/2	021
Work Order Number 2110266			Received by	JMW	
Checklist completed by:	10/29/20	21	Reviewed by	/ SH Initials	10/29/2021 Date
	Carrier name:	FedEx 1day			
Shipping container/cooler in good condition?		Yes 🗹	No	Not Present	
Custody seals intact on shippping container/cooler?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes	No	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received	ved?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No		
Samples in proper container/bottle?		Yes 🗸	No		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No		
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in compliance?		Yes 🗹	Νο	1.2 °C	
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vials submitt	ed 🔽
Water - pH<2 acceptable upon receipt?		Yes	No 🗹	NA LOT #	13171
		Adjusted?	es	Checked by	
Water - ph>9 (S) or ph>10 (CN) acceptable upon rec	eipt?	Yes	No	NA 🗹 🛛 LOT #	
		Adjusted?		Checked by	
Any No response must be detailed in the comments	section below.				
Client contacted: Date	e contacted:		Per	son contacted	
Contacted by: Reg	arding:		and a financial cash of a first product of the second second second		
Comments: Metals portion received with pH > 2	2.				

Corrective Action: pH adjusted to < 2 at Login with HNO3 Lot #14903.

, 								
Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist: Reportable Data						
Proje	ect Na	ame: Martin Lake PDP5 LRC Da	te: 11/2/2021					
Revi	ewer	Name: Angie O'Donnell Laborat	ory Work Order: 2110266					
Prep	Batc	h Number(s): See Prep Dates Report Run Bat	ch: See Analytical Dates Report					
#1	A ²	Description		Yes	No	NA ³	NR ⁴ EI	R# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of sample a	acceptability upon receipt?	X		N 7	R1	-01
D 2	OI	2) Were all departures from standard conditions described in an exce	ption report?		_	Χ		-
K2	01	Sample and Quality Control (QC) Identification	D numbers?	v				
		2) Are all laboratory ID numbers cross-referenced to the correspondi	ng OC data?	X				
R3	OI	Test Reports		21				
		1) Were all samples prepared and analyzed within holding times?		Χ				
		2) Other than those results < MQL, were all other raw values bracket	ed by calibration standards?	Χ				
		3) Were calculations checked by a peer or supervisor?		Χ				
		4) Were all analyte identifications checked by a peer or supervisor?		Χ				
		5) Were sample detection limits reported for all analytes not detected	?	X				
		6) Were all results for soil and sediment samples reported on a dry w 7) $W = 0$	eight basis?			X		
		7) were % moisture (or solids) reported for all soli and sediment sam	methanol per EDA Mathad 50252			X		
		9) If required for the project TICs reported?	methanor per El A Method 5055?			A X		
R4	0	Surrogate Recovery Data				Λ		
	_	1) Were surrogates added prior to extraction?				Χ		
		2) Were surrogate percent recoveries in all samples within the labora	tory QC limits?			Χ		
R5	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		Χ				
		2) Were blanks analyzed at the appropriate frequency?		Χ				
		3) Where method blanks taken through the entire analytical process,	including preparation and, if	X				
		applicable, cleanup procedures?		v				
		5) For analyte(s) detected in a blank sample was the concentration x	inadjusted for sample specific	Λ				
		factors, in all associated field samples, greater than 10 times the con-	centration in the blank sample?			Х		
R6	OI	Laboratory Control Samples (LCS):	•					
		1) Were all COCs included in the LCS?		Χ				
		2) Was each LCS taken through the entire analytical procedure, inclu	ding prep and cleanup steps?	Χ				
		3) Were LCSs analyzed at the required frequency?		Χ				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory Q	C limits?	X				
		(5) Does the detectability data document the laboratory's capability to the calculate the SDL s^2	detect the COCs at the MDL used	Х				
		6) Was the LCSD RPD within OC limits (if applicable)?		x				
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data		Λ				
		1) Were the project/method specified analytes included in the MS and	d MSD?	X				
		2) Were MS/MSD analyzed at the appropriate frequency?		Χ				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC	limits?		Χ		R7	7-03
		4) Were MS/MSD RPDs within laboratory QC limits?		Χ				
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each matrix?		X				
		2) were analytical duplicates analyzed at the appropriate frequency? 3) Were RDDs or relative standard deviations within the laboratory (OC limits?	X V			-+	
BØ	OI	Method Quantitation Limits (MOLs).		Λ				
	- 51	1) Are the MOLs for each method analyte included in the laboratory	data package?	X				
		2) Do the MQLs correspond to the concentration of the lowest non-zero	ero calibration standard?	X				
		3) Are unadjusted MQLs and DCSs included in the laboratory data p	ackage?	Χ				
R10	OI	Other Problems/Anomalies						
		1) Are all known problems/anomalies/special conditions noted in this	s LRC and ER?	Χ				
		2) Was applicable and available technology used to lower the SDL to	minimize the matrix interference	X				
		affects on the sample results?	Accorditation Drogram for the				-+	
1		analytes, matrices and methods associated with this laboratory data p	ackage?	Х				
		······································	0					

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting Dat	ta					
Proje	ct Na	ame: Martin Lake PDP5 LRC Date	e: 11/2/2021					
Revie	wer	Name: Angie O'Donnell Laborator	ry Work Order: 2110266					
Prep	Batc	h Number(s): See Prep Dates Report Run Batcl	h: See Analytical Dates Report					
#1	A^2	Description	5 1	Ves	No	NA ³	NR ⁴	ER# ⁵
<u>S1</u>	OI	Initial Calibration (ICAL)		105	110	1111	Tur	
51	01			V				
		1) Were response factors and/or relative response factors for each analy 2) Were response BSDs or correlation coefficient criteric met?	te within QC limits?					
		2) West the number of standards recommended in the method used for all	11 apalytes?					
		4) Were all points generated between the lowest and highest standard use	analytes:					
		5) Are ICAL data available for all instruments used?	sed to calculate the edive?					
		6) Has the initial calibration curve been verified using an appropriate se	cond source standard?	X				
S 2	OI	Initial and Continuing calibration Verification (ICCV and CCV) are	ad Continuing Calibration	Λ				
5-	01	blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-required	d QC limits?	Χ				
		3) Was the ICAL curve verified for each analyte?		Χ				
		4) Was the absolute value of the analyte concentration in the inorganic (CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		Χ				
		2) Were ion abundance data within the method-required QC limits?		Χ				
S4	0	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-required (QC limits?	Χ				
S 5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) review	wed by an analyst?	Χ				
		2) Were data associated with manual integrations flagged on the raw data	ta?	Χ				
S6	0	Dual Column Confirmation				_		
~-	-	1) Did dual column confirmation results meet the method-required QC?				X		
S 7	0	Tentatively Identified Compounds (TICs):						
C0	т	1) If TICs were requested, were the mass spectra and TIC data subject to	o appropriate checks?	_		X		
58	1	Interference Check Sample (ICS) Results:		v				
50	т	1) were percent recoveries within method QC hmits?	ditions	λ				
59	1	Serial Dilutions, Post Digestion Spikes, and Method of Standard Ad						
		1) Were percent differences, recoveries, and the linearity within th method?	e QC limits specified in the		Х			S9-01
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Χ				
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		Χ				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficiency to	ests or evaluation studies?	X				
S12	OI	Standards Documentation						
	<u>.</u>	1) Are all standards used in the analyses NIST-traceable or obtained from	m other appropriate sources?	X				
<u>813</u>	OI	Compound/Analyte Identification Procedures		N/				
614	OI	Demonstration of Analyst Compound/analyse identification documented.	2	Λ				
514	01	1) Was DOC conducted consistent with NEL AC Chapter 5 Annendix	C2	v				
		1) Was DOC conducted consistent with NELAC Chapter $5 - \text{Appendix}$ 2) Is documentation of the analyst's competency up to date and on file?						
\$15	OI	Verification/Validation Documentation for Methods (NELAC Chapt	er 5)	Λ				
515		1) Are all the methods used to generate the data documented, vo	erified, and validated, where	V				
		applicable?	,	λ				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method performed?		X				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

flant

11/04/21 Date

CLIENT:GolderProject:Martin Lake PDP5Lab Order:2110266

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Filtered Metals Analysis Method SW7470A - Filtered Mercury Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis Method M4500-H+ B - pH Analysis Method M2320 B - Alkalinity Analysis

Exception Report R1-01

The samples were received and log-in performed on 10/29/2021. A total of 1 sample was received and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R7-03

For Anions Analysis, the recovery of Sulfate for the Matrix Spike and Matrix Spike Duplicate (2110266-01 MS/MSD) was slightly below the method control limits. These are flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

For Filtered Metals Analysis, the recoveries of up to five analytes for the Matrix Spike and Matrix Spike Duplicate (2110266-01 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These analytes were within method control limits in the associated LCS. No further corrective action was taken.

Exception Report S9-01

For Filtered Metals Analysis, the recovery of Selenium for the Post Digestion Spike (2110266-01 PDS) was below the method control limits. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated Serial Dilution. No further corrective action was taken.

 CLIENT:
 Golder

 Project:
 Martin Lake PDP5
 Work Order Sample Summary

 Lab Order:
 2110266

 Lab Smp ID Client Sample ID
 Tag Number
 Date Collected
 Date Recved

2110266-01 PDP5

Date: 02-Nov-21

 Date Collected
 D

 10/28/21 11:10 AM
 10

Date Recved 10/29/2021

Lab Order:2110266Client:GolderProject:Martin Lake PDP5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2110266-01B	PDP5	10/28/21 11:10 AM	Aqueous	M2320 B	Alkalinity Preparation	11/03/21 10:43 AM	102689
	PDP5	10/28/21 11:10 AM	Aqueous	E300	Anion Preparation	11/01/21 11:01 AM	102648
	PDP5	10/28/21 11:10 AM	Aqueous	E300	Anion Preparation	11/01/21 11:01 AM	102648
	PDP5	10/28/21 11:10 AM	Aqueous	E300	Anion Preparation	11/01/21 11:01 AM	102648
	PDP5	10/28/21 11:10 AM	Aqueous	M4500-H+ B	pH Preparation	11/02/21 09:14 AM	102665
	PDP5	10/28/21 11:10 AM	Aqueous	M2540C	TDS Preparation	11/01/21 10:18 AM	102647
2110266-01C	PDP5	10/28/21 11:10 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved	11/02/21 07:49 AM	102658
	PDP5	10/28/21 11:10 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved	11/02/21 07:49 AM	102658
	PDP5	10/28/21 11:10 AM	Aqueous	SW7470A	Mercury Aq Prep	11/02/21 08:43 AM	102660

Lab Order: 2110266 **Client:** Golder **Project:**

Martin Lake PDP5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2110266-01B	PDP5	Aqueous	M2320 B	Alkalinity	102689	1	11/03/21 02:22 PM	TITRATOR_211103A
	PDP5	Aqueous	E300	Anions by IC method - Water	102648	100	11/02/21 10:46 AM	IC2_211101A
	PDP5	Aqueous	E300	Anions by IC method - Water	102648	1	11/01/21 10:55 PM	IC2_211101A
	PDP5	Aqueous	E300	Anions by IC method - Water	102648	10	11/01/21 07:59 PM	IC2_211101A
	PDP5	Aqueous	M4500-H+ B	pH	102665	1	11/02/21 09:53 AM	TITRATOR_211102A
	PDP5	Aqueous	M2540C	Total Dissolved Solids	102647	1	11/01/21 01:30 PM	WC_211101B
2110266-01C	PDP5	Aqueous	SW7470A	Mercury (0.45µ Filtered)	102660	1	11/02/21 12:00 PM	CETAC2_HG_211102 A
	PDP5	Aqueous	SW6020B	Metals-ICPMS (0.45µ filtered)	102658	1	11/02/21 11:20 AM	ICP-MS5_211102A
	PDP5	Aqueous	SW6020B	Metals-ICPMS (0.45µ filtered)	102658	100	11/02/21 11:44 AM	ICP-MS4 211102A

Date: 04-Nov-21

CLIENT: Golder Client Sample ID: PDP5 **Project:** Martin Lake PDP5 Lab ID: 2110266-01 **Project No:** 20142271 Collection Date: 10/28/21 11:10 AM Lab Order: 2110266 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
METALS-ICPMS (0.45µ FILTERED)		SW6	020B				Analyst: SP
Dissolved Antimony	0.00332	0.000800	0.00250		mg/L	1	11/02/21 11:20 AM
Dissolved Arsenic	0.00352	0.00200	0.00500	J	mg/L	1	11/02/21 11:20 AM
Dissolved Barium	0.0878	0.00300	0.0100		mg/L	1	11/02/21 11:20 AM
Dissolved Beryllium	<0.000300	0.000300	0.00100		mg/L	1	11/02/21 11:20 AM
Dissolved Boron	41.7	1.00	3.00		mg/L	100	11/02/21 11:44 AM
Dissolved Cadmium	<0.000300	0.000300	0.00100		mg/L	1	11/02/21 11:20 AM
Dissolved Calcium	605	10.0	30.0		mg/L	100	11/02/21 11:44 AM
Dissolved Chromium	<0.00200	0.00200	0.00500		mg/L	1	11/02/21 11:20 AM
Dissolved Cobalt	< 0.00300	0.00300	0.00500		mg/L	1	11/02/21 11:20 AM
Dissolved Lead	<0.000300	0.000300	0.00100		mg/L	1	11/02/21 11:20 AM
Dissolved Lithium	0.219	0.00500	0.0100		mg/L	1	11/02/21 11:20 AM
Dissolved Magnesium	1020	10.0	30.0		mg/L	100	11/02/21 11:44 AM
Dissolved Molybdenum	0.0963	0.00200	0.00500		mg/L	1	11/02/21 11:20 AM
Dissolved Potassium	75.1	10.0	30.0		mg/L	100	11/02/21 11:44 AM
Dissolved Selenium	1.22	0.00200	0.00500		mg/L	1	11/02/21 11:20 AM
Dissolved Sodium	584	10.0	30.0		mg/L	100	11/02/21 11:44 AM
Dissolved Thallium	0.000793	0.000500	0.00150	J	mg/L	1	11/02/21 11:20 AM
MERCURY (0.45µ FILTERED)		SW7	470A				Analyst: JVR
Dissolved Mercury	<0.000800	0.0000800	0.000200		mg/L	1	11/02/21 12:00 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: BM
Chloride	607	30.0	100		mg/L	100	11/02/21 10:46 AM
Fluoride	18.8	1.00	4.00		mg/L	10	11/01/21 07:59 PM
Sulfate	2660	100	300		mg/L	100	11/02/21 10:46 AM
ALKALINITY		M23	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	123	10.0	20.0		mg/L @ pH 4.51	1	11/03/21 02:22 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	11/03/21 02:22 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	11/03/21 02:22 PM
Alkalinity, Total (As CaCO3)	123	20.0	20.0		mg/L @ pH 4.51	1	11/03/21 02:22 PM
РН		M4500)-H+ B				Analyst: BM
рН	8.31	0	0		pH Units@18.5°C	1	11/02/21 09:53 AM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	9440	50.0	50.0		mg/L	1	11/01/21 01:30 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

S - Spike Recovery outside control limits

Page 1 of 27

CLIENT: Golder Work Order: 2110266 Project: Martin Lake PDP5

ANALYTICAL QC SUMMARY REPORT

RunID: CETAC2_HG_211021C

Sample ID: DCS-102486 SampType: DCS	Batch ID: Run ID:	102486 CETAC2_	HG_211021	٦ / C	FestNo: Analysis Date:	SW7470A 10/21/2021	1:46:02 PM	Units: Prep Date:	mg/l 10/2	L 1/2021
Analyte	I	Result	RL	SPK v	alue Ref V	/al %RE	EC LowLimit	HighLimit	%RPD	RPDLimit Qual
Dissolved Mercury	0.	000172	0.000200	0.000	200 0	86	6.0 82	119	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- Detected at the Method Detection Elinit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

CLIENT: Work Order:	Golder 2110266				AN	NALYT	ICAL (QC SU	JMMAR	RY R	EPORT
The OC data in bate	Martin La	ce PDP5	following	moles: 211	0266-010		Kuiiii); (LIAC2_I	16_4	11102A
		Botch ID:	102660		TostN		7470 4		Lipite:	ma/l	
SampType: MBLK	2000	Baich ID.	102000 CETAC2	HG 21110	2 Δ Δnalvs	D. 3W	/4/UA)/2021 11-/19	0.28 VW	Pren Date:	mg/∟	0021
				_110_21110			./2021 11.40	.20 Am	Tiop Date.	11/2/2	.021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		<0	.008000	0.000200							
Sample ID: MB-FIL	TER-102637	Batch ID:	102660		TestNo	o: SW	7470A		Units:	mg/L	
SampType: MBLK		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 11:50):44 AM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		<0	.0000800	0.000200	0						
Sample ID: LCS-10)2660	Batch ID:	102660		TestNo	o: SW	7470A		Units:	mg/L	
SampType: LCS		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 11:53	8:00 AM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		C	0.00216	0.000200	0.00200	0	108	85	115		
Sample ID: LCSD-	102660	Batch ID:	102660		TestNo	o: SW 7	7470A		Units:	mg/L	
SampType: LCSD		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 11:55	5:46 AM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		C	0.00216	0.000200	0.00200	0	108	85	115	0	15
Sample ID: 211026	6-01C MS	Batch ID:	102660		TestNo	o: SW 7	7470A		Units:	mg/L	
SampType: MS		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 12:02	2:33 PM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		C	.00189	0.000200	0.00200	0	94.5	80	120		
Sample ID: 211026	6-01C MSD	Batch ID:	102660		TestNo	: SW	7470A		Units:	mg/L	
SampType: MSD		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 12:04	1:49 PM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Dissolved Mercury		C	.00189	0.000200	0.00200	0	94.5	80	120	0	15
Sample ID: 211026	6-01C SD	Batch ID:	102660		TestNo	o: SW 7	7470A		Units:	mg/L	
SampType: SD		Run ID:	CETAC2	_HG_21110	2A Analys	sis Date: 11/2	2/2021 12:07	2:05 PM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Mercury		<0	0.000400	0.00100	0	0				0	10

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 2 of 27 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

CLIENT:	Golder					ΔΝΔ	LVTI	CAL C	C ST	IMMAI	RV REPORT	r
Work Order:	2110266											•
Project:	Martin La	ke PDP5						RunID): C	CETAC2_	_HG_211102A	
Sample ID: 21102	66-01C PDS	Batch ID:	102660		٦	FestNo:	SW74	70A		Units:	mg/L	
SampType: PDS		Run ID:	CETAC2	2_HG_21110	2A /	Analysis Da	ate: 11/2/2	021 12:09	:21 PM	Prep Date:	11/2/2021	
Analyte			Result	RL	SPK v	alue Re	ef Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua	al
Mercury			0.00224	0.000200	0.002	250	0	89.6	85	115		

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

- MDL Method Detection Limit
- R RPD outside accepted control limits

Page 3 of 27

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT:	Golder					ΔΝΔΤ	VTI	AL C	C SU	MMA	RVI	REPORT
Work Order:	2110266											
Project:	Martin Lal	ke PDP5						RunID): C	ETAC2_	_HG_2	211102A
Sample ID: ICV-21	1102	Batch ID	: R117821		Те	stNo:	SW747	70A		Units:	mg/l	_
SampType: ICV		Run ID:	CETAC2	_HG_21110	2A An	alysis Date	e: 11/2/2 0	021 11:43	:54 AM	Prep Date	:	
Analyte			Result	RL	SPK valu	ue Ref	Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Dissolved Mercury			0.00399	0.000200	0.0040) ()	99.8	90	110		
Sample ID: CCV1-	211102	Batch ID	: R117821		Te	stNo:	SW747	70A		Units:	mg/l	-
SampType: CCV		Run ID:	CETAC2	_HG_21110	2A An	alysis Date	e: 11/2/20	021 12:38	:00 PM	Prep Date	:	
Analyte			Result	RL	SPK valu	ue Ref	Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Dissolved Mercury			0.00201	0.000200	0.0020) (2	101	90	110		

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 4 of 27

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT:	Golder				ΔN	ΔΙ.ΥΤΙ	CALC	C SU	MMAR	V RF	PORT
Work Order:	2110266										
Project:	Martin Lal	ke PDP5					RunID): I(CP-MS4_	210803	4
Sample ID: DCS2-	101483	Batch ID:	101483		TestNo:	SW60)20B		Units:	mg/L	
SampType: DCS2		Run ID:	ICP-MS4	_210803A	Analysis	s Date: 8/3/2(021 1:21:00	PM	Prep Date:	8/2/202	1
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RF	DLimit Qual
Dissolved Calcium			0.278	0.300	0.300	0	92.6	70	130	0	0
Dissolved Magnesiu	m		0.295	0.300	0.300	0	98.4	70	130	0	0
Dissolved Potassiur	n		0.307	0.300	0.300	0	102	70	130	0	0
Dissolved Sodium			0.292	0.300	0.300	0	97.2	70	130	0	0
Sample ID: DCS4-	101483	Batch ID:	101483		TestNo:	SW60)20B		Units:	mg/L	
SampType: DCS4		Run ID:	ICP-MS4	_210803A	Analysis	s Date: 8/3/2(021 1:27:00) PM	Prep Date:	8/2/202	1
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RP	DLimit Qual
Dissolved Boron			0.0315	0.0300	0.0300	0	105	70	130	0	0

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 5 of 27

R RPD outside accepted control limits

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT:	Golder					JAT VT	ICAT (талат		FDADT
Work Ord	er: 2110266				AI		ICAL	2C SI	JIVIIVIAI		LIUNI
Project:	Martin L	ake PDP5					RunII): I	CP-MS4_	211102	2A
The QC data	a in batch 102658 a	pplies to the	e following s	amples: 211	0266-01C						
Sample ID:	MB-102658	Batch ID:	102658		TestNo	: SW	6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS	4_211102A	Analys	is Date: 11/2	2/2021 11:34	4:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Dissolved Bo	oron		<0.0100	0.0300							
Sample ID:	MB-102637-FILTE	R Batch ID:	102658		TestNo	: SW	6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS	4_211102A	Analys	is Date: 11/2	2/2021 11:36	6:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Dissolved Bo	oron		<0.0100	0.0300							
Sample ID:	LCS-102658	Batch ID:	102658		TestNo): SW	6020B		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS	4_211102A	Analys	is Date: 11/2	2/2021 11:38	3:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Dissolved Bo	oron		0.204	0.0300	0.200	0	102	80	120		
Sample ID:	LCSD-102658	Batch ID:	102658		TestNo): SW (6020B		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS	4_211102A	Analys	is Date: 11/2	2/2021 11:40	0:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Dissolved Bo	oron		0.204	0.0300	0.200	0	102	80	120	0.391	15
Sample ID:	2110266-01C SD	Batch ID:	102658		TestNo	: SW	6020B		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS	4_211102A	Analys	is Date: 11/2	2/2021 11:46	6:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Boron			41.4	15.0	0	41.6				0.567	20
Calcium			587	150	0	605				3.14	20
Magnesium			976	150	0	1020				3.93	20
Potassium			73.8	150	0	75.1				1.75	20
Sodium			559	150	0	584				4.34	20
Sample ID:	2110266-01C PDS	Batch ID:	102658		TestNo	SW	6020B		Units:	mg/L	
Samp i ype:	PDS	Run ID:	ICP-MS	4_211102A	Analys	IS Date: 11/2	2/2021 11:48	3:00 AM	Prep Date:	11/2/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Boron			57.5	3.00	20.0	41.7	79.2	75	125		
Calcium			1090	30.0	500	605	96.7	75	125		
Magnesium			1460	30.0	500	1020	88.4	75	125		
Potassium			558	30.0	500	75.1	96.6	75	125		
Sodium			1050	30.0	500	584	92.4	75	125		
Qualifiers:	B Analyte de	tected in the	associated N	lethod Blank	DF	Dilution Facto	or				
	J Analyte de	tected betwee	en MDL and	RL	MDL	Method Detec	ction Limit			P	age 6 of 27

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order:	2110266				AN	ALIII	CAL			XIK	CPU	K I
Project:	Martin Lal	ke PDP5					RunII): I(CP-MS4_	211102	2A	
Sample ID: 211026	6-01C MS	Batch ID:	102658		TestNo:	SW6	020B		Units:	mg/L		
SampType: MS		Run ID:	ICP-MS4	_211102A	Analysis	Date: 11/2/2	2021 11:55	:00 AM	Prep Date:	11/2/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit	Qual
Dissolved Boron			40.1	3.00	0.200	41.7	-778	75	125			S
Sample ID: 211026	6-01C MSD	Batch ID:	102658		TestNo:	SW6	020B		Units:	mg/L		
SampType: MSD		Run ID:	ICP-MS4	_211102A	Analysis	Date: 11/2/2	2021 11:57	:00 AM	Prep Date:	11/2/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit	Qual
Dissolved Boron			40.7	3.00	0.200	41.7	-462	75	125	1.56	15	S

В

CLIENT:

Golder

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

- DF Dilution Factor MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 7 of 27

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

CLIENT: Work Order:	Golder 2110266				AN	ALYT	ICAL (C SU	MMA	RY REPOR	RT
Project:	Martin La	ke PDP5					KullIL): N	_ F -1 V13 4	_211102A	
Sample ID: ICV-2	11102	Batch ID:	R11782	:5	TestNo	: SW6	6020B		Units:	mg/L	
SampType: ICV		Run ID:	ICP-MS	64_211102A	Analys	s Date: 11/2	/2021 10:51	:00 AM	Prep Date	e:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit	Qual
Dissolved Boron			0.0969	0.0300	0.100	0	96.9	90	110		
Dissolved Calcium	1		2.53	0.300	2.50	0	101	90	110		
Dissolved Magnes	ium		2.45	0.300	2.50	0	98.1	90	110		
Dissolved Potassi	um		2.50	0.300	2.50	0	100	90	110		
Dissolved Sodium			2.45	0.300	2.50	0	98.0	90	110		
Sample ID: LCVL	-211102	Batch ID:	R11782	5	TestNo	: SW6	6020B		Units:	mg/L	
SampType: LCVL		Run ID:	ICP-MS	64_211102A	Analys	is Date: 11/2	/2021 10:57	:00 AM	Prep Date	e:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit	Qual
Dissolved Boron			0.0199	0.0300	0.0200	0	99.4	80	120		
Dissolved Calcium	1		0.0922	0.300	0.100	0	92.2	80	120		
Dissolved Magnes	ium		0.104	0.300	0.100	0	104	80	120		
Dissolved Potassi	um		0.105	0.300	0.100	0	105	80	120		
Dissolved Sodium			0.103	0.300	0.100	0	103	80	120		
Sample ID: CCV1	-211102	Batch ID:	R11782	5	TestNo	: swe	6020B		Units:	mg/L	
SampType: CCV		Run ID:	ICP-MS	64_211102A	Analys	s Date: 11/2	/2021 11:59	:00 AM	Prep Date	e:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit	Qual
Dissolved Boron			0.213	0.0300	0.200	0	107	90	110		
Dissolved Calcium	1		5.20	0.300	5.00	0	104	90	110		
Dissolved Magnes	ium		5.29	0.300	5.00	0	106	90	110		
Dissolved Potassi	um		5.16	0.300	5.00	0	103	90	110		
Dissolved Sodium			5.08	0.300	5.00	0	102	90	110		

CLIENT:

Golder

-

Page 8 of 27

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT:	Golder
Work Order:	2110266

ANALYTICAL QC SUMMARY REPORT

Project: Martin Lake PDP5

RunID: ICP-N

ICP-MS5_211101A

Sample ID: DCS1-102615	Batch ID:	102615		TestNo:	SW	6020B		Units:	mg/l	-	
SampType: DCS	Run ID:	ICP-MS5	_211101A	Analysis	s Date: 11/	1/2021 10:40	0:00 AM	Prep Date:	10/2	9/2021	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Q	ual
Dissolved Antimony	0.	00115	0.00250	0.00100	0	115	70	130	0	0	
Dissolved Beryllium	0.0	000558	0.00100	0.000500	0	112	70	130	0	0	
Dissolved Cadmium	0.0	000566	0.00100	0.000500	0	113	70	130	0	0	
Dissolved Lead	0.0	000570	0.00100	0.000500	0	114	70	130	0	0	
Dissolved Thallium	0.0	000571	0.00150	0.000500	0	114	70	130	0	0	
Sample ID: DCS2-102615	Batch ID:	102615		TestNo:	SW	6020B		Units:	mg/l	_	
SampType: DCS2	Run ID:	ICP-MS5	_211101A	Analysis	s Date: 11/	1/2021 10:43	:00 AM	Prep Date:	10/2	9/2021	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Q	ual
Dissolved Calcium	C).314	0.300	0.300	0	105	70	130	0	0	
Dissolved Magnesium	C).313	0.300	0.300	0	104	70	130	0	0	
Dissolved Potassium	C	0.308	0.300	0.300	0	103	70	130	0	0	
Dissolved Sodium	C).317	0.300	0.300	0	106	70	130	0	0	
Sample ID: DCS3-102615	Batch ID:	102615		TestNo:	SW	6020B		Units:	mg/l	_	
SampType: DCS3	Run ID:	ICP-MS5	_211101A	Analysis	s Date: 11/	1/2021 10:46	:00 AM	Prep Date:	10/2	9/2021	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Q	ual
Dissolved Arsenic	0.	00502	0.00500	0.00500	0	100	70	130	0	0	
Dissolved Barium	0.	00523	0.0100	0.00500	0	105	70	130	0	0	
Dissolved Chromium	0.	00562	0.00500	0.00500	0	112	70	130	0	0	
Dissolved Cobalt	0.	00529	0.00500	0.00500	0	106	70	130	0	0	
Dissolved Lithium	0.	00527	0.0100	0.00500	0	105	70	130	0	0	
Dissolved Molybdenum	0.	00512	0.00500	0.00500	0	102	70	130	0	0	
Dissolved Selenium	0.	00521	0.00500	0.00500	0	104	70	130	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

D Not Detected at the Method Detection Elinit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 9 of 27

rrojeci: Martin	Lake PDP5					Nulli	J . I	CI -1VIS5_4	211102A
The QC data in batch 102658	8 applies to the	following s	amples: 211	0266-01C					
Sample ID: MB-102658	Batch ID:	102658		TestNo	swe	6020B		Units:	mg/L
SampType: MBLK	Run ID:	ICP-MS	5_211102A	Analysi	s Date: 11/2	/2021 11:07	7:00 AM	Prep Date:	11/2/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Dissolved Antimony	<(0.000800	0.00250						
Dissolved Arsenic	<	0.00200	0.00500						
Dissolved Barium	<	0.00300	0.0100						
Dissolved Beryllium	<(0.000300	0.00100						
Dissolved Cadmium	<(0.000300	0.00100						
Dissolved Calcium		<0.100	0.300						
Dissolved Chromium	<	0.00200	0.00500						
Dissolved Cobalt	<	0.00300	0.00500						
Dissolved Lead	<(0.000300	0.00100						
Dissolved Lithium	<	0.00500	0.0100						
Dissolved Magnesium		<0.100	0.300						
Dissolved Molybdenum	<	0.00200	0.00500						
Dissolved Potassium		<0.100	0.300						
Dissolved Selenium	<	0.00200	0.00500						
Dissolved Sodium		<0.100	0.300						
Dissolved Thallium	<(0.000500	0.00150						
Sample ID: MB-102637-FIL	TER Batch ID:	102658		TestNo	: SW	6020B		Units:	mg/L
SampType: MBLK	Run ID:	ICP-MS	5_211102A	Analysi	s Date: 11/2	/2021 11:09	9:00 AM	Prep Date:	11/2/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Dissolved Antimony	<(0.000800	0.00250						
Dissolved Arsenic	<	0.00200	0.00500						
Dissolved Barium	<	0.00300	0.0100						
Dissolved Beryllium	<(0.000300	0.00100						
Dissolved Cadmium	<(0.000300	0.00100						
Dissolved Calcium		<0.100	0.300						
Dissolved Chromium	<	0.00200	0.00500						
Dissolved Cobalt	<	0.00300	0.00500						
Dissolved Lead	<(0.000300	0.00100						
Dissolved Lithium	<	0.00500	0.0100						
Dissolved Magnesium		<0.100	0.300						
Dissolved Molybdenum	<	0.00200	0.00500						
Dissolved Potassium		<0.100	0.300						
Dissolved Selenium	<	0.00200	0.00500						
Dissolved Sodium		<0.100	0.300						
Dissolved Thallium	<(0.000500	0.00150						

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 10 of 27
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

ANALYTICAL QC SUMMARY REPORT

CLIENT: Golder Work Order: 2110266

Project. Martin Lake PDP5

ICP-MS5 2111024 RunID

CLIENT: Golder Work Order: 2110266

Project: Martin Lake PDP5

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS5_211102A

Sample ID: LCS-102658	Batch ID:	102658		TestNo	SW6	020B		Units:	mg/l	_
SampType: LCS	Run ID:	ICP-MS5	_211102A	Analys	is Date: 11/2	/2021 11:12	2:00 AM	Prep Date	: 11/2	/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Dissolved Antimony		0.202	0.00250	0.200	0	101	80	120		
Dissolved Arsenic		0.205	0.00500	0.200	0	102	80	120		
Dissolved Barium		0.202	0.0100	0.200	0	101	80	120		
Dissolved Beryllium		0.197	0.00100	0.200	0	98.3	80	120		
Dissolved Cadmium		0.200	0.00100	0.200	0	99.9	80	120		
Dissolved Calcium		5.05	0.300	5.00	0	101	80	120		
Dissolved Chromium		0.202	0.00500	0.200	0	101	80	120		
Dissolved Cobalt		0.201	0.00500	0.200	0	100	80	120		
Dissolved Lead		0.200	0.00100	0.200	0	100	80	120		
Dissolved Lithium		0.197	0.0100	0.200	0	98.3	80	120		
Dissolved Magnesium		5.17	0.300	5.00	0	103	80	120		
Dissolved Molybdenum		0.200	0.00500	0.200	0	99.9	80	120		
Dissolved Potassium		5.26	0.300	5.00	0	105	80	120		
Dissolved Selenium		0.200	0.00500	0.200	0	99.8	80	120		
Dissolved Sodium		5.18	0.300	5.00	0	104	80	120		
Dissolved Thallium		0.201	0.00150	0.200	0	100	80	120		
Sample ID: LCSD-102658	Batch ID:	102658		TestNo	: SW6	020B		Units:	mg/l	_
Sample ID: LCSD-102658 SampType: LCSD	Batch ID: Run ID:	102658 ICP-MS5	5_211102A	TestNc Analys	: SW6 is Date: 11/2	б020В /2021 11:14	1:00 AM	Units: Prep Date	mg/l : 11/2	- /2021
Sample ID: LCSD-102658 SampType: LCSD Analyte	Batch ID: Run ID:	102658 ICP-MS5 Result	5_ 211102A RL	TestNo Analys SPK value	o: SW6 is Date: 11/2 Ref Val	6020B /2021 11:14 %REC	I:00 AM LowLimi	Units: Prep Date t HighLimit	mg/l :: 11/2 %RPD	- /2021 RPDLimit Qual
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204	5_ 211102A RL 0.00250	TestNo Analys SPK value 0.200	o: SW6 iis Date: 11/2 Ref Val	020B 2021 11:14 %REC 102	I:00 AM LowLimit	Units: Prep Date t HighLimit 120	mg/l :: 11/2 %RPD 0.740	- /2021 RPDLimit Qual 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204	5_211102A RL 0.00250 0.00500	TestNc Analys SPK value 0.200 0.200	o: SW6 iis Date: 11/2 Ref Val 0 0	020B 2021 11:14 %REC 102 102	1:00 AM LowLimi 80 80	Units: Prep Date t HighLimit 120 120	mg/l :: 11/2 %RPD 0.740 0.572	- /2021 RPDLimit Qual 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199	RL 0.00250 0.00500 0.0100	TestNc Analys SPK value 0.200 0.200 0.200	o: SW6 is Date: 11/2 Ref Val 0 0 0	020B /2021 11:14 %REC 102 102 99.7	1:00 AM LowLimi 80 80 80	Units: Prep Date t HighLimit 120 120 120	mg/l 2: 11/2 %RPD 0.740 0.572 1.53	- /2021 RPDLimit Qual 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.198	RL 0.00250 0.00500 0.0100 0.00100	TestNo Analys SPK value 0.200 0.200 0.200 0.200	o: SW6 iis Date: 11/2 Ref Val 0 0 0 0 0	020B 2021 11:14 %REC 102 99.7 99.2	LowLimit 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120	mg/l 2: 11/2 %RPD 0.740 0.572 1.53 0.863	- /2021 RPDLimit Qual 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200	o: SW6 iis Date: 11/2 Ref Val 0 0 0 0 0 0 0	020B /2021 11:14 %REC 102 102 99.7 99.2 100	LowLimit 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120	mg/l : 11/2 %RPD 0.740 0.572 1.53 0.863 0.499	- /2021 RPDLimit Qual 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Calcium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.198 0.201 5.15	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 5.00	o: SW6 iis Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0	020B 2021 11:14 %REC 102 99.7 99.2 100 103	LowLimi 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120	mg/l :: 11/2 %RPD 0.740 0.572 1.53 0.863 0.499 1.79	- /2021 RPDLimit Qual 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Cadmium Dissolved Calcium Dissolved Chromium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201 5.15 0.203	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 5.00 0.200	o: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 2021 11:14 0%REC 102 99.7 99.2 100 103 101	LowLimi 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.198 0.201 5.15 0.203 0.202	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 5.00 0.200 0.200 0.200	2: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	020B /2021 11:14 /%REC 102 99.7 99.2 100 103 101 101	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201 5.15 0.203 0.202 0.202 0.200	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00100	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	2: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	020B /2021 11:14 %REC 102 99.7 99.2 100 103 101 101 99.8	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead Dissolved Lithium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201 5.15 0.203 0.202 0.202 0.200 0.197	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00100 0.0100	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	:: S₩6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 %REC 102 99.7 99.2 100 103 101 101 99.8 98.4	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead Dissolved Lithium Dissolved Magnesium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.201 5.15 0.203 0.202 0.200 0.200 0.197 5.24	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00500 0.00100 0.0100 0.300	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 5.00	2: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 %REC 102 99.7 99.2 100 103 101 101 99.8 98.4 105	E:00 AM LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lithium Dissolved Magnesium Dissolved Molybdenum	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201 5.15 0.203 0.202 0.200 0.197 5.24 0.200	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00100 0.0100 0.300 0.300 0.300 0.00500	TestNo Analys SPK value 0.200 0.200 0.200 0.200 5.00 0.200 0.200 0.200 0.200 0.200 5.00 0.200 5.00 0.200	x: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 2021 11:14 0%REC 102 99.7 99.2 100 103 101 101 99.8 98.4 105 100	LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Cobalt Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.201 5.15 0.203 0.202 0.200 0.197 5.24 0.200 5.24 0.200 5.30	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00100 0.00100 0.00100 0.00100 0.00100 0.00500 0.300 0.300	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 5.00 0.200 5.00	x: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 2021 11:14 0%REC 102 99.7 99.2 100 103 101 101 99.8 98.4 105 100 106	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date t HighLimit 120 120 120 120 120 120 120 120 120 120	mg/l mg/l mg/l %RPD 0.740 0.572 1.53 0.863 0.499 1.79 0.380 0.611 0.148 0.087 1.34 0.124 0.852	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium Dissolved Selenium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.204 0.199 0.201 5.15 0.203 0.202 0.200 0.197 5.24 0.200 5.30 0.200	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00500 0.300 0.00500 0.300 0.300 0.300 0.300 0.300 0.300 0.300	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 5.00 0.200 5.00 0.200 5.00 0.200	2: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 2021 11:14 2021 102 99.7 99.2 100 103 101 101 99.8 98.4 105 100 106 100	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date 120 120 120 120 120 120 120 120 120 120	mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15
Sample ID: LCSD-102658 SampType: LCSD Analyte Dissolved Antimony Dissolved Arsenic Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cobalt Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Lithium Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium Dissolved Selenium Dissolved Sodium	Batch ID: Run ID:	102658 ICP-MS5 Result 0.204 0.204 0.199 0.198 0.201 5.15 0.203 0.202 0.200 0.200 0.197 5.24 0.200 5.30 0.200 5.30 0.200 5.25	E_211102A RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00500 0.300 0.300 0.300 0.300 0.300 0.300	TestNo Analys SPK value 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 5.00 0.200 5.00 0.200 5.00 0.200 5.00	2: SW6 is Date: 11/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020B 2021 11:14 2021 11:14 2021 102 99.7 99.2 100 103 101 101 99.8 98.4 105 100 106 100 106 100 105	E:00 AM LowLimi 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: Prep Date 120 120 120 120 120 120 120 120 120 120	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	- /2021 RPDLimit Qual 15 15 15 15 15 15 15 15 15 15

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 11 of 27 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

25

CLIENT: Golder Work Order: 2110266

_

ANALYTICAL QC SUMMARY REPORT

Martin Lake PDP5 **Project:**

RunID:

ICP-MS5_211102A

Sample ID:	2110266-0	D1C SD	Batch ID:	102658		TestN	lo: SWe	6020B		Units:	mg/	L	
SampType:	SD		Run ID:	ICP-MS	5_211102A	Analy	sis Date: 11/2	/2021 11:22	2:00 AM	Prep Date:	11/2	/2021	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	Qual
Antimony			<	0.00400	0.0125	0	0.00332				0	20	
Arsenic			~	<0.0100	0.0250	0	0.00352				0	20	
Barium				0.0834	0.0500	0	0.0878				5.12	20	
Beryllium			<	0.00150	0.00500	0	0				0	20	
Cadmium			<	0.00150	0.00500	0	0				0	20	
Chromium			~	<0.0100	0.0250	0	0				0	20	
Cobalt			<	<0.0150	0.0250	0	0				0	20	
Lead			<	0.00150	0.00500	0	0				0	20	
Lithium				0.224	0.0500	0	0.219				2.48	20	
Molybdenum				0.0972	0.0250	0	0.0963				0.849	20	
Selenium				1.20	0.0250	0	1.22				1.75	20	
Thallium			<	0.00250	0.00750	0	0.000793				0	20	
Sample ID:	2110266-0	01C PDS	Batch ID:	102658		TestN	lo: SWe	6020B		Units:	mg/	L	
SampType: I	PDS		Run ID:	ICP-MS	5_211102A	Analy	sis Date: 11/2	/2021 11:25	5:00 AM	Prep Date:	11/2	/2021	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	Qual
Antimony				0.209	0.00250	0.200	0.00332	103	75	125			
Arsenic				0.194	0.00500	0.200	0.00352	95.3	75	125			
Barium				0.288	0.0100	0.200	0.0878	100	75	125			
Beryllium				0.181	0.00100	0.200	0	90.5	75	125			
Cadmium				0.194	0.00100	0.200	0	97.1	75	125			
Chromium				0.200	0.00500	0.200	0	99.9	75	125			
Cobalt				0.191	0.00500	0.200	0	95.3	75	125			
Lead				0.199	0.00100	0.200	0	99.5	75	125			
Lithium				0.380	0.0100	0.200	0.219	80.8	75	125			
Molybdenum				0.299	0.00500	0.200	0.0963	101	75	125			
Selenium				1.36	0.00500	0.200	1.22	70.0	75	125			S
Thallium				0.201	0.00150	0.200	0.000793	99.9	75	125			
Sample ID:	2110266-0	01C MS	Batch ID:	102658		TestN	lo: SW6	6020B		Units:	mg/	L	
SampType: I	MS		Run ID:	ICP-MS	5_211102A	Analy	rsis Date: 11/2	/2021 11:29	9:00 AM	Prep Date:	11/2	/2021	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	Qual
Dissolved An	ntimony			0.210	0.00250	0.200	0.00332	103	75	125			
Dissolved Ar	senic			0.200	0.00500	0.200	0.00352	98.2	75	125			
Dissolved Ba	arium			0.294	0.0100	0.200	0.0878	103	75	125			
Dissolved Be	eryllium			0.186	0.00100	0.200	0	92.9	75	125			
Dissolved Ca	admium			0.195	0.00100	0.200	0	97.5	75	125			
Dissolved Ca	alcium			570	0.300	5.00	567	74.6	75	125			
Dissolved Ch	nromium			0.198	0.00500	0.200	0	99.0	75	125			
Qualifiers:	B A	Analyte dete	ected in the a	ssociated M	Iethod Blank	DF	Dilution Facto	or					
	J A	Analyte dete	ected between	n MDL and	RL	MDL	Method Detec	tion Limit			Р	age 12 of	27
	ND N	Not Detecte	d at the Meth	od Detectio	on Limit	R	RPD outside a	accepted cont	rol limits		1	0-1201	
	RL F	Reporting L	imit			S	Spike Recover	ry outside co	ntrol limits				
	J A	Analyte dete	ected betweer	n SDL and I	RL	Ν	Parameter not	NELAP cert	ified				

Analyte detected between SDL and RL

N Parameter not NELAP certified

CLIENT: Golder Work Order: 2110266

ANALYTICAL QC SUMMARY REPORT

Project: Martin Lake PDP5

KUNID: IC.	ł

P-MS5_211102A

Sample ID: 2110266-01C MS	Batch ID:	102658		TestN	o: SW6	020B		Units:	mg/L	-	
SampType: MS	Run ID: ICP-MS5_2		65_211102A	Analysis Date: 11/2/2021 11:29			9:00 AM	Prep Date	: 11/2	11/2/2021	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLim	it Qual
Dissolved Cobalt		0.193	0.00500	0.200	0	96.5	75	125			
Dissolved Lead		0.200	0.00100	0.200	0	100	75	125			
Dissolved Lithium		0.404	0.0100	0.200	0.219	92.5	75	125			
Dissolved Magnesium		931	0.300	5.00	914	343	75	125			S
Dissolved Molybdenum		0.314	0.00500	0.200	0.0963	109	75	125			
Dissolved Potassium		76.5	0.300	5.00	71.0	110	75	125			
Dissolved Selenium		1.46	0.00500	0.200	1.22	121	75	125			
Dissolved Sodium		567	0.300	5.00	549	349	75	125			S
Dissolved Thallium		0.204	0.00150	0.200	0.000793	102	75	125			
Sample ID: 2110266-01C MSD	Batch ID:	102658		TestN	o: SW6	020B		Units:	mg/L	_	
SampType: MSD	Run ID:	ICP-MS	5_211102A	Analys	sis Date: 11/2/	2021 11:3 [,]	1:00 AM	Prep Date	: 11/2	/2021	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLim	it Qual
Dissolved Antimony		0.211	0.00250	0.200	0.00332	104	75	125	0.497	15	
Dissolved Arsenic		0.201	0.00500	0.200	0.00352	98.8	75	125	0.571	15	
Dissolved Barium		0.295	0.0100	0.200	0.0878	104	75	125	0.346	15	
Dissolved Beryllium		0.184	0.00100	0.200	0	91.8	75	125	1.20	15	
Dissolved Cadmium		0.196	0.00100	0.200	0	97.9	75	125	0.459	15	
Dissolved Calcium		575	0.300	5.00	567	177	75	125	0.891	15	S
Dissolved Chromium		0.201	0.00500	0.200	0	100	75	125	1.23	15	
Dissolved Cobalt		0.195	0.00500	0.200	0	97.6	75	125	1.16	15	
Dissolved Lead		0.201	0.00100	0.200	0	100	75	125	0.113	15	
Dissolved Lithium		0.401	0.0100	0.200	0.219	91.2	75	125	0.647	15	
Dissolved Magnesium		944	0.300	5.00	914	603	75	125	1.39	15	S
Dissolved Molybdenum		0.316	0.00500	0.200	0.0963	110	75	125	0.759	15	
Dissolved Potassium		76.9	0.300	5.00	71.0	117	75	125	0.425	15	
Dissolved Selenium		1.47	0.00500	0.200	1.22	126	75	125	0.700	15	S
Dissolved Sodium		572	0.300	5.00	549	456	75	125	0.937	15	S
Dissolved Thallium		0.205	0.00150	0.200	0.000793	102	75	125	0.540	15	

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 13 of 27

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified
CLIENT: Golder Work Order: 2110266 **Project:**

J

Analyte detected between SDL and RL

Martin Lake PDP5

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS5_211102A

Page 14 of 27

Sample ID: ICV-211102	Batch ID: F	R117824	Test	No:	SW6020B		Units:	mg/L
SampType: ICV	Run ID: I	CP-MS5_211102	2 A Anal	ysis Date: 1	11/2/2021 10:5	4:00 AM	Prep Date	2
Analyte	Re	esult RL	SPK value	Ref Va	al %REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Dissolved Antimony	0.1	102 0.002	50 0.100	0	102	90	110	
Dissolved Arsenic	0.1	101 0.005	0.100	0	101	90	110	
Dissolved Barium	0.1	102 0.010	0 0.100	0	102	90	110	
Dissolved Beryllium	0.0	0.001	0.100	0	95.2	90	110	
Dissolved Cadmium	0.1	101 0.001	0.100	0	101	90	110	
Dissolved Calcium	2.	.50 0.30	0 2.50	0	99.9	90	110	
Dissolved Chromium	0.1	104 0.005	0.100	0	104	90	110	
Dissolved Cobalt	0.1	104 0.005	0.100	0	104	90	110	
Dissolved Lead	0.1	101 0.001	0.100	0	101	90	110	
Dissolved Lithium	0.0	0.010	0 0.100	0	93.9	90	110	
Dissolved Magnesium	2.	.43 0.30	0 2.50	0	97.2	90	110	
Dissolved Molybdenum	0.0	0.005	0.100	0	98.0	90	110	
Dissolved Potassium	2.	.53 0.30	0 2.50	0	101	90	110	
Dissolved Selenium	0.1	103 0.005	0.100	0	103	90	110	
Dissolved Sodium	2.	.52 0.30	0 2.50	0	101	90	110	
Dissolved Thallium	0.0	0.001	50 0.100	0	99.8	90	110	
		2447024	T	NI- 1			I Indian	
Sample ID: LCVL-211102	Batch ID: F	11/024	Test	INO:	5W6020B		Units:	mg/L
Sample ID: LCVL-211102 SampType: LCVL	Run ID: I	CP-MS5_21110	2A Anal	lysis Date: 1	SW6020B 11/2/2021 10:5	9:00 AM	Prep Date	mg/L ::
Sample ID: LCVL-211102 SampType: LCVL Analyte	Run ID: I	CP-MS5_211102	2A Anal SPK value	INO: : : : Iysis Date: / 	11/2/2021 10:5	9:00 AM LowLim	Prep Date	mg/L e: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony	Run ID: I Run ID: I Re	CP-MS5_21110: esult RL 0203 0.002	2 A Anal SPK value 50 0.00200	INO: : : Iysis Date: - Ref Va	SW6020B 11/2/2021 10:5 al %REC 102	9:00 AM LowLim 80	Prep Date	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic	Run ID: I Run ID: I Re 0.00 0.00	CP-MS5_211102 esult RL 0203 0.002 0499 0.005	2A Anal SPK value 50 0.00200 00 0.00500	INO: : : Iysis Date: / Ref Va 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8	9:00 AM LowLim 80 80	Prep Date it HighLimit 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium	Batch ID: F Run ID: F Re 0.00 0.00 0.00	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500	INO: : : lysis Date: / Ref Va 0 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9	9:00 AM LowLim 80 80 80	it HighLimit 120 120	mg/L c: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001	SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00500 00 0.00100	No: : : : lysis Date: · Ref Va 0 0 0 0 0 0 0	11/2/2021 10:5 A %REC 102 99.8 98.9 102	9:00 AM LowLim 80 80 80 80 80	it HighLimit 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium	Run ID: I Run ID: I Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100	No: : : : lysis Date: · → Ref Va → 0 0 0 0 0 0 0	11/2/2021 10:5 al %REC 102 99.8 98.9 102 107	9:00 AM LowLim 80 80 80 80 80 80	it HighLimit 120 120 120 120 120 120 120	mg/L 9: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Calcium	Run ID: I Run ID: I Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00100 00 0.00100	NO: : : : lysis Date: · Ref Va 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9 102 107 97.1	9:00 AM LowLim 80 80 80 80 80 80 80 80	0nits: Prep Date it HighLimit 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Chromium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00100 00 0.00100 00 0.00500	NO: : : lysis Date: · → Ref Va → 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9 102 107 97.1 103	9:00 AM LowLim 80 80 80 80 80 80 80 80 80	Drits: Prep Date it HighLimit 120 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005 0512 0.005	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00100 00 0.00500 00 0.00500	NO: : : : lysis Date: · Ref Va 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9 102 107 97.1 103 102	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80	Units: Prep Date iit HighLimit 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005 0512 0.005 0103 0.001	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00500 00 0.00500 00 0.00500 00 0.00500	NO: : : : : : : : : : : : : : : : : : :	SW6020B 11/2/2021 10:5 al %REC 99.8 98.9 102 107 97.1 103 102 103	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80 80 80 80	Prep Date Prep Date it HighLimit 120 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Baryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Cobalt Dissolved Lead Dissolved Lithium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005 0103 0.001 0974 0.010	Anal SPK value SPK value S	No: : : : lysis Date: · → Ref Va → 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9 102 107 97.1 103 102 103 97.4	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80 80 80 80	Drits: Prep Date it HighLimit 120 120 120 120 120 120 120 120 120 120	mg/L %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Cobalt Dissolved Lead Dissolved Lithium Dissolved Magnesium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005 0103 0.001 0974 0.010 0998 0.30	2A Anal SPK value 50 0.00200 00 0.00500 00 0.00100 00 0.00100 00 0.00100 00 0.00500 00 0.00500 00 0.00500 00 0.00500 00 0.00100 00 0.0100 00 0.100	No: : : : lysis Date: · → Ref Va → Ref Va 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 99.8 98.9 102 107 97.1 103 102 103 97.4 99.8	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80 80 80 80	Drits: Prep Date it HighLimit 120 120 120 120 120 120 120 120 120 120	mg/L %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead Dissolved Lithium Dissolved Magnesium Dissolved Molybdenum	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0512 0.005 0103 0.001 0974 0.010 0998 0.30 0507 0.005	Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00500 00 0.00100 00 0.00500 00 0.00500 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00100 00 0.00100 00 0.00100 00 0.00500	No: : : : lysis Date: · → Ref Va → Ref Va 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 99.8 98.9 102 107 97.1 103 102 103 97.4 99.8 101	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80	Drits: Prep Date it HighLimit 120 120 120 120 120 120 120 120 120 120	mg/L %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Cobalt Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lithium Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0512 0.005 0103 0.001 0974 0.010 0998 0.30 0507 0.005 102 0.30	Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00500 00 0.00500 00 0.00500 00 0.00100 00 0.0100 00 0.0100 00 0.00500 00 0.00500 00 0.00500 00 0.00500 00 0.00500	No: : : : lysis Date: · → Ref Va → Ref Va 0 0 0 0 0 0 0 0 0 0 0 0 0	SW6020B 11/2/2021 10:5 al %REC 99.8 98.9 102 107 97.1 103 102 103 97.4 99.8 101 102	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80	Prep Date Prep Date it HighLimit 120 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Beryllium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Chromium Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium Dissolved Selenium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_21110: esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0512 0.005 0103 0.001 0974 0.010 0998 0.30 0507 0.005 102 0.30 0488 0.005	Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00500 00 0.00500 00 0.00500 00 0.0100 00 0.0100 00 0.00500 00 0.00500 00 0.00500	No: : : : : : : : : : : : : : : : : : :	SW6020B 11/2/2021 10:5 al %REC 102 99.8 98.9 102 107 97.1 103 102 103 97.4 99.8 101 102 97.7	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80	Prep Date Prep Date it HighLimit 120 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual
Sample ID: LCVL-211102 SampType: LCVL Analyte Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Baryllium Dissolved Cadmium Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Cobalt Dissolved Cobalt Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Magnesium Dissolved Molybdenum Dissolved Potassium Dissolved Selenium Dissolved Sodium	Batch ID: F Run ID: F Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CP-MS5_211102 esult RL 0203 0.002 0499 0.005 0495 0.010 0102 0.001 0107 0.001 0971 0.30 0514 0.005 0103 0.001 0974 0.010 0998 0.30 0507 0.005 102 0.30 0488 0.005 107 0.30	Anal SPK value 50 0.00200 00 0.00500 00 0.00500 00 0.00100 00 0.00100 00 0.00500 00 0.00500	No: : : : : : : : : : : : : : : : : : :	SW6020B 11/2/2021 10:5 al %REC 99.8 98.9 102 107 97.1 103 102 103 97.4 99.8 101 102 97.7 107	9:00 AM LowLim 80 80 80 80 80 80 80 80 80 80 80 80 80	Prep Date Prep Date it HighLimit 120 120 120 120 120 120 120 120	mg/L :: %RPD RPDLimit Qual

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Ν Parameter not NELAP certified

28

CLIENT:GolderWork Order:2110266Project:Martin Lake PDP5

ANALYTICAL QC SUMMARY REPORT

RunID: IC

ICP-MS5_211102A

Sample ID: CCV1-211102	Batch ID:	R1178	24	TestNo	: SW	6020B		Units:	mg/	L
SampType: ССV	Run ID:	ICP-M	S5_211102A	Analys	is Date: 11/2	2/2021 11:40	0:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Dissolved Antimony		0.201	0.00250	0.200	0	101	90	110		
Dissolved Arsenic		0.202	0.00500	0.200	0	101	90	110		
Dissolved Barium		0.199	0.0100	0.200	0	99.6	90	110		
Dissolved Beryllium		0.197	0.00100	0.200	0	98.4	90	110		
Dissolved Cadmium		0.201	0.00100	0.200	0	101	90	110		
Dissolved Calcium		5.15	0.300	5.00	0	103	90	110		
Dissolved Chromium		0.200	0.00500	0.200	0	100	90	110		
Dissolved Cobalt		0.204	0.00500	0.200	0	102	90	110		
Dissolved Lead		0.199	0.00100	0.200	0	99.5	90	110		
Dissolved Lithium		0.198	0.0100	0.200	0	98.8	90	110		
Dissolved Magnesium		5.30	0.300	5.00	0	106	90	110		
Dissolved Molybdenum		0.202	0.00500	0.200	0	101	90	110		
Dissolved Potassium		5.30	0.300	5.00	0	106	90	110		
Dissolved Selenium		0.199	0.00500	0.200	0	99.6	90	110		
Dissolved Sodium		5.35	0.300	5.00	0	107	90	110		
Dissolved Thallium		0.200	0.00150	0.200	0	100	90	110		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- Detected at the Method Detection Elinit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 15 of 27

- S Spike Recovery outside control limits
- 5 Spike Recovery outside control minit
- N Parameter not NELAP certified

CLIENT:	Golder
Work Order:	2110266

ANALYTICAL QC SUMMARY REPORT

Project: Martin Lake PDP5

RunID: IC2_210928A

Sample ID:	DCS2-102216	Batch ID:	102216		TestNo	E30	D		Units:	mg/l	L
SampType:	DCS2	Run ID:	IC2_2109	28A	Analysi	s Date: 9/28	/2021 1:38:	01 PM	Prep Date	: 9/28	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chloride			0.533	1.00	0.5000	0	107	70	130	0	0
Fluoride			0.179	0.400	0.2000	0	89.5	70	130	0	0
Sulfate			1.55	3.00	1.500	0	104	70	130	0	0
Sample ID:	DCS3-102216	Batch ID:	102216		TestNo	E30	D		Units:	mg/l	L
SampType:	DCS3	Run ID:	IC2_2109	28A	Analysi	s Date: 9/28	/2021 1:54:	01 PM	Prep Date	: 9/28	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chloride			1.05	1.00	1.000	0	105	70	130	0	0
Fluoride			0.324	0.400	0.4000	0	81.0	70	130	0	0
Sulfato			3 10	3.00	3 000	0	103	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- Detected at the Method Detection Emit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 16 of 27

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

WOIK OIG	uci. 2110	200									
Project:	Mart	n Lake PDP5					RunII): l	IC2_2111	01A	
The QC dat	a in batch 1026	48 applies to the	following	samples: 211	0266-01B						
Sample ID:	MB-102648	Batch ID:	102648	1	TestNo	: E30	00		Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_21	1101A	Analys	is Date: 11/	1/2021 1:30:	12 PM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Chloride			<0.300	1.00							
Fluoride			<0.100	0.400							
Sulfate			<1.00	3.00							
Sample ID:	LCS-102648	Batch ID:	102648	ł	TestNo	: E30	00		Units:	mg/L	
SampType:	LCS	Run ID:	IC2_21	1101A	Analys	is Date: 11/	1/2021 1:46:	12 PM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Chloride			10.1	1.00	10.00	0	101	90	110		
Fluoride			4.03	0.400	4.000	0	101	90	110		
Sulfate			31.6	3.00	30.00	0	105	90	110		
Sample ID:	LCSD-102648	Batch ID:	102648	1	TestNo	: E30	00		Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_21	1101A	Analys	is Date: 11/ ′	1/2021 2:02:	11 PM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Chloride			10.1	1.00	10.00	0	101	90	110	0.018	20
Fluoride			4.06	0.400	4.000	0	101	90	110	0.610	20
Sulfate			31.4	3.00	30.00	0	105	90	110	0.399	20
Sample ID:	2110242-10EM	IS Batch ID:	102648	;	TestNo	: E30	00		Units:	mg/L	
SampType:	MS	Run ID:	IC2_21	1101A	Analys	is Date: 11/ ′	1/2021 7:27:	12 PM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Chloride			247	10.0	200.0	47.89	99.6	90	110		
Fluoride			206	4.00	200.0	0	103	90	110		
Sulfate			246	30.0	200.0	47.66	99.1	90	110		
Sample ID:	2110242-10EM	ISD Batch ID:	102648	1	TestNo	: E30	00		Units:	mg/L	
SampType:	MSD	Run ID:	IC2_21	1101A	Analys	is Date: 11/ ′	1/2021 7:43:	12 PM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Chloride			248	10.0	200.0	47.89	99.9	90	110	0.207	20
Fluoride			206	4.00	200.0	0	103	90	110	0.275	20
Sulfate			246	30.0	200.0	47.66	99.3	90	110	0.136	20
Sample ID:	2110266-01B	IS Batch ID:	102648		TestNo	E30	00		Units:	mg/L	
SampType:	MS	Run ID:	IC2_21	1101A	Analys	is Date: 11/2	2/2021 11:02	2:23 AM	Prep Date	: 11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 17 of 27

Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

2110266

Golder

Work Order:

CLIENT:

CLIENT:	Golder	der ANALYTICAL OC SUMMARY REPO									RT	
Work Order:	2110266											
Project:	Martin La	ke PDP5					RunII	D: I	C2_2111	01A		
Sample ID: 21102	266-01BMS	Batch ID:	102648		TestNo:	E30	0		Units:	mg/L		
SampType: MS		Run ID:	IC2_2111	01A	Analysis	s Date: 11/2	2/2021 11:02	2:23 AM	Prep Date	: 11/1/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Chloride			2430	100	2000	607.2	91.0	90	110			
Fluoride			2010	40.0	2000	0	101	90	110			
Sulfate			4400	300	2000	2661	87.0	90	110			S
Sample ID: 21102	266-01BMSD	Batch ID:	102648		TestNo:	E30	0		Units:	mg/L		
SampType: MSD		Run ID:	IC2_2111	01A	Analysis	s Date: 11/2	2/2021 11:18	3:23 AM	Prep Date	: 11/1/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Chloride			2420	100	2000	607.2	90.4	90	110	0.525	20	
Fluoride			2010	40.0	2000	0	101	90	110	0.040	20	
Sulfate			4390	300	2000	2661	86.2	90	110	0.349	20	S

В

CLIENT:

Golder

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 18 of 27

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

Project:	Martin	Lake PDP5					RunII	D: I	C2_2111	01A	
Sample ID:	ICV-211101	Batch ID:	R11780	3	TestNo	E30	0		Units:	mg/L	
SampType:	ICV	Run ID:	IC2_211	1101A	Analys	is Date: 11/1	/2021 12:58	3:12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Chloride			25.4	1.00	25.00	0	102	90	110		
Fluoride			10.4	0.400	10.00	0	104	90	110		
Sulfate			80.2	3.00	75.00	0	107	90	110		
Sample ID:	CCV1-211101	Batch ID:	R11780	3	TestNo	: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_211	1101A	Analys	is Date: 11/1	/2021 9:51:	12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Fluoride			4.03	0.400	4.000	0	101	90	110		
Sulfate			32.0	3.00	30.00	0	107	90	110		
Sample ID:	CCV2-211101	Batch ID:	R11780	3	TestNo	: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_211	1101A	Analys	is Date: 11/1	/2021 11:59	9:12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Chloride			10.4	1.00	10.00	0	104	90	110		
Fluoride			4.16	0.400	4.000	0	104	90	110		
Sulfate			31.6	3.00	30.00	0	105	90	110		
Sample ID:	CCV3-211101	Batch ID:	R11780	3	TestNo	: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_211	1101A	Analys	is Date: 11/2	/2021 11:50	0:23 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Fluoride			3.94	0.400	4.000	0	98.5	90	110		
Sulfate			31.8	3.00	30.00	0	106	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

Golder

2110266

CLIENT:

Work Order:

ANALYTICAL QC SUMMARY REPORT

Page 19 of 27

CLIENT: Work Ord	lor	Golder 2110266				AN	ALYTI	CAL (QC SU	UMMAR	RY RE	PORT
Project:		Martin Lal	ke PDP5					RunII): I	C2 21110	1B	
The QC dat	a in batch	n 102648 ap	plies to the	following sa	mples: 211	0266-01B				_		
Sample ID:	MB-1026	648	Batch ID:	102648		TestNo:	E300	I		Units:	mg/L	
SampType:	MBLK		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 1:30:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	iit HighLimit %	6RPD RPE	DLimit Qual
Chloride				<0.300	1.00							
Sample ID:	LCS-102	2648	Batch ID:	102648		TestNo:	E300	l		Units:	mg/L	
SampType:	LCS		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 1:46:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPE	DLimit Qual
Chloride				10.1	1.00	10.00	0	101	80	120		
Sample ID:	LCSD-10	02648	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType:	LCSD		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 2:02:	11 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPE	DLimit Qual
Chloride				10.1	1.00	10.00	0	101	80	120	0.018	20
Sample ID:	DCS2-10	02648	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType:	DCS2		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 5:03:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPD	DLimit Qual
Chloride				0.624	1.00	0.5000	0	125	70	130		
Sulfate				1.70	3.00	1.500	0	113	70	130		
Sample ID:	DCS3-10	02648	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType:	DCS3		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/2	2021 5:19:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	iit HighLimit %	6RPD RPD	DLimit Qual
Fluoride				0.304	0.400	0.4000	0	76.0	70	130		
Sulfate				3.24	3.00	3.000	0	108	70	130		
Sample ID:	2110242	-10EMS	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType:	MS		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 7:27:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	iit HighLimit %	6RPD RPE	DLimit Qual
Chloride				247	10.0	200.0	47.89	99.6	80	120		
Sample ID:	2110242	-10EMSD	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType:	MSD		Run ID:	IC2_2111	01B	Analysis	s Date: 11/1/	2021 7:43:	12 PM	Prep Date:	11/1/202	1
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPE	DLimit Qual
Chloride				248	10.0	200.0	47.89	99.9	80	120	0.207	20

CLIENT:

Golder

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Page 20 of 27

Ν Parameter not NELAP certified

CLIENT:	Golder				ΔN		CAL C	C ST	IMMAR		FPORT
Work Order:	2110266										
Project:	Martin Lal	ke PDP5					RunID): I(C2_21110	1B	
Sample ID: 211026	6-01BMS	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC2_211101	В	Analysis	Date: 11/2/2	021 11:02	:23 AM	Prep Date:	11/1/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			2430	100	2000	607.2	91.0	80	120		
Sample ID: 211026	6-01BMSD	Batch ID:	102648		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC2_211101	В	Analysis	Date: 11/2/2	021 11:18	:23 AM	Prep Date:	11/1/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			2420	100	2000	607.2	90.4	80	120	0.525	20

Page 21 of 27

Qualifiers:

В

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

CLIENT: Work Order:	Golder 2110266				AN	ALYT	ICAL (QC SU	JMMA	RY R	EPORT
Project:	Martin La	ke PDP5					RunII	D: I	C2_2111	01B	
Sample ID: ICV-2	11101	Batch ID:	R117838	5	TestNo	: E30	0		Units:	mg/L	
SampType: ICV		Run ID:	IC2_211	101B	Analysi	s Date: 11/1	/2021 12:58	8:12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			25.4	1.00	25.00	0	102	90	110		
Sample ID: CCV1	-211101	Batch ID:	R117838	;	TestNo	: E30	0		Units:	mg/L	
SampType: CCV		Run ID:	IC2_211	101B	Analysi	s Date: 11/1	/2021 9:51:	12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Sample ID: CCV2	-211101	Batch ID:	R117838	;	TestNo	: E30	0		Units:	mg/L	
SampType: CCV		Run ID:	IC2_211	101B	Analysi	s Date: 11/1	/2021 11:59	9:12 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.4	1.00	10.00	0	104	90	110		
Sample ID: CCV3	-211101	Batch ID:	R117838	;	TestNo	: E30	0		Units:	mg/L	
SampType: CCV		Run ID:	IC2_211	101B	Analysi	s Date: 11/2	2/2021 11:50	0:23 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		

CLIENT:

Golder

Page 22 of 27

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT: Work Order:	Golder 2110266				AN	ALYTI	CAL (QC SU	MMA	RY R	EPORT
Project:	Martin Lak	e PDP5					RunID): T	ITRATO	R_211	1102A
The QC data in batc	h 102665 app	olies to the	following samp	oles: 2110	266-01B						
Sample ID: 211026	6-01B-DUP	Batch ID:	102665		TestNo:	M4500)-H+ B		Units:	pH U	nits@17.3°C
SampType: DUP		Run ID:	TITRATOR_	211102A	Analysis	Date: 11/2/2	021 9:54:0	00 AM	Prep Date:	11/2/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD I	RPDLimit Qual
рН			8.33	0	0	8.310				0.240	5

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 23 of 27

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT: Work Order:	Golder 2110266				AN	ALYTI	CAL (QC SU	JMMAH	RY REPORT
Project:	Martin Lal	ke PDP5					RunII):]	FITRATO	R_211102A
Sample ID: ICV-2	1102	Batch ID:	R117815		TestNo:	M450	00-H+ B		Units:	pH Units@22.3°C
SampType: ICV		Run ID:	TITRATOR	_211102A	Analysis	Date: 11/2/	2021 9:18:	00 AM	Prep Date:	11/2/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
рН			10.04	0	10.00	0	100	99	101	
Sample ID: CCV1	211102	Batch ID:	R117815		TestNo:	M450	00-H+ B		Units:	pH Units@21.8°C
SampType: CCV		Run ID:	TITRATOR	_211102A	Analysis	Date: 11/2/	2021 9:57:	00 AM	Prep Date:	11/2/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
рН			7.01	0	7.000	0	100	97.1	102.9	

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 24 of 27

- S Spike Recovery outside control limits
- 5 Spike Recovery outside control minit
- N Parameter not NELAP certified

Work Order:	2110266				AIN	ALYII	CAL	in st	UNINAR	(Y K	EPORI
Project:	Martin Lal	ke PDP5					RunII	D: T	TTRATO	R_211	103A
The QC data in bat	ch 102689 ap	plies to the	e following sam	ples: 2110	266-01B						
Sample ID: MB-10	2689	Batch ID:	102689		TestNo:	M232	20 B		Units:	mg/L	@ pH 4.41
SampType: MBLK		Run ID:	TITRATOR	_211103A	Analysis	s Date: 11/3/2	2021 11:45	5:00 AM	Prep Date:	11/3/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	<10.0	20.0							
Alkalinity, Carbonat	te (As CaCO3)	<10.0	20.0							
Alkalinity, Hydroxid	e (As CaCO3)	1	<10.0	20.0							
Alkalinity, Total (As	CaCO3)		<20.0	20.0							
Sample ID: LCS-1	02689	Batch ID:	102689		TestNo:	M232	20 B		Units:	mg/L	@ pH 4.21
SampType: LCS		Run ID:	TITRATOR	_211103A	Analysis	s Date: 11/3/2	2021 11:49	9:00 AM	Prep Date:	11/3/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Alkalinity, Total (As	CaCO3)		54.6	20.0	50.00	0	109	74	129		
Sample ID: 21102	56-07B-DUP	Batch ID:	102689		TestNo:	M232	20 B		Units:	mg/L	@ pH 4.5
SampType: DUP		Run ID:	TITRATOR	_211103A	Analysis	s Date: 11/3/ 2	2021 12:53	3:00 PM	Prep Date:	11/3/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	43.5	20.0	0	44.50				2.27	20
Alkalinity, Carbonat	te (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxid	e (As CaCO3)	1	<10.0	20.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		43.5	20.0	0	44.50				2.27	20
Sample ID: 21102	56-08B-DUP	Batch ID:	102689		TestNo:	M232	20 B		Units:	mg/L	@ pH 4.49
SampType: DUP		Run ID:	TITRATOR	_211103A	Analysis	s Date: 11/3/2	2021 1:04:	00 PM	Prep Date:	11/3/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD F	RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	3)	61.6	20.0	0	62.90				2.09	20
Alkalinity, Carbonat	te (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxid	e (As CaCO3)	1	<10.0	20.0	0	0				0	20
Alkalinity, Total (As	CaCO3)		61.6	20.0	0	62.90				2.09	20

CLIENT:

Golder

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Page 25 of 27

CLIENT:	Golder				AN	ALYT	ICAL	DC SI	IMMAR	Y REPORT
Work Order:	2110266									
Project:	Martin Lal	ke PDP5					RunII):]	ITRATO	R_211103A
Sample ID: ICV-2	11103	Batch ID:	R117871		TestNo:	M23	320 B		Units:	mg/L @ pH 4.27
SampType: ICV		Run ID:	TITRATO	R_211103A	Analysis	s Date: 11/3	8/2021 11:41	:00 AM	Prep Date:	11/3/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbor	nate (As CaCO	3)	8.48	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	93.1	20.0	0					
Alkalinity, Hydroxid	de (As CaCO3)		<10.0	20.0	0					
Alkalinity, Total (A	s CaCO3)		102	20.0	100.0	0	102	98	102	
Sample ID: CCV1	-211103	Batch ID:	R117871		TestNo:	M23	320 B		Units:	mg/L @ pH 4.28
SampType: ССV		Run ID:	TITRATO	R_211103A	Analysis	s Date: 11/3	8/2021 1:45:	00 PM	Prep Date:	11/3/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbor	nate (As CaCO	3)	23.7	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	77.8	20.0	0					
Alkalinity, Hydroxid	de (As CaCO3)		<10.0	20.0	0					
Alkalinity, Total (A	s CaCO3)		101	20.0	100.0	0	101	90	110	
Sample ID: CCV2	-211103	Batch ID:	R117871		TestNo:	M23	320 B		Units:	mg/L @ pH 4.37
SampType: ССV		Run ID:	TITRATO	R_211103A	Analysis	s Date: 11/3	8/2021 2:27:	00 PM	Prep Date:	11/3/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbor	nate (As CaCO	3)	27.2	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	74.4	20.0	0					
Alkalinity, Hydroxid	de (As CaCO3)		<10.0	20.0	0					
Alkalinity, Total (A	s CaCO3)		102	20.0	100.0	0	102	90	110	
Sample ID: CCV3	-211103	Batch ID:	R117871		TestNo:	M23	320 B		Units:	mg/L @ pH 4.27
SampType: ССV		Run ID:	TITRATO	R_211103A	Analysis	s Date: 11/3	3/2021 3:16:	00 PM	Prep Date:	11/3/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbor	nate (As CaCO	3)	11.6	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	90.7	20.0	0					
Alkalinity, Hydroxid	de (As CaCO3)		<10.0	20.0	0					
Alkalinity, Total (A	s CaCO3)		102	20.0	100.0	0	102	90	110	

В Analyte detected in the associated Method Blank

- Analyte detected between MDL and RL J ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 26 of 27

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

CLIENT:	Golder				ΔN		CAL (C SI	IMMAR	V R	FPORT
Work Order:	2110266										
Project:	Martin Lal	ke PDP5					RunII): V	VC_21110	1B	
The QC data in bate	ch 102647 ap	plies to the	following sam	oles: 211	0266-01B						
Sample ID: MB-10	2647	Batch ID:	102647		TestNo:	M254	40C		Units:	mg/L	
SampType: MBLK		Run ID:	WC_21110	IB	Analysis	s Date: 11/1/	/2021 1:30:	00 PM	Prep Date:	11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qual
Total Dissolved Sol	ids (Residue,	Filtera	<10.0	10.0							
Sample ID: LCS-10	02647	Batch ID:	102647		TestNo:	M254	40C		Units:	mg/L	
SampType: LCS		Run ID:	WC_21110 ⁴	IB	Analysis	s Date: 11/1/	/2021 1:30:	00 PM	Prep Date:	11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qual
Total Dissolved Soli	ids (Residue,	Filtera	746	10.0	745.6	0	100	90	113		
Sample ID: 211024	44-02D-DUP	Batch ID:	102647		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_21110 ⁴	IB	Analysis	s Date: 11/1/	/2021 1:30:	00 PM	Prep Date:	11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qual
Total Dissolved Sol	ids (Residue,	Filtera	4870	50.0	0	4850				0.412	5
Sample ID: 21102 4	14-03D-DUP	Batch ID:	102647		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_21110 ⁴	IB	Analysis	s Date: 11/1 /	/2021 1:30:	00 PM	Prep Date:	11/1/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qual
Total Dissolved Soli	ids (Residue,	Filtera	2020	50.0	0	2020				0	5

CLIENT:

Golder

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 27 of 27
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT: Golder

Work Order: 2110266

Project: Martin Lake PDP5

TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Chloride	0.300	1.00
Fluoride	0.100	0.400
Sulfate	1.00	3.00
TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Chloride	0.300	1.00
TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Antimony	0.000800	0.00250
Arsenic	0.00200	0.00500
Barium	0.00300	0.0100
Beryllium	0.000300	0.00100
Boron	0.0100	0.0300
Cadmium	0.000300	0.00100
Calcium	0.100	0.300
Chromium	0.00200	0.00500
Cobalt	0.00300	0.00500
Lead	0.000300	0.00100
Lithium	0.00500	0.0100
Magnesium	0.100	0.300
Molybdenum	0.00200	0.00500
Potassium	0.100	0.300
Selenium	0.00200	0.00500
Sodium	0.100	0.300
Thallium	0.000500	0.00150
TestNo: M2320 B	MDL	MQL
Analyte	g/L @ pH 4.4	g/L @ pH 4.₄
Alkalinity, Bicarbonate (As CaCO3)	10.0	20.0
Alkalinity, Carbonate (As CaCO3)	10.0	20.0
Alkalinity, Hydroxide (As CaCO3)	10.0	20.0
Alkalinity, Total (As CaCO3)	20.0	20.0
TestNo: SW7470A	MDL	MQL
Analyte	mg/L	mg/L
Mercury	0.0000800	0.000200
TestNo: M2540C	MDL	MQL
Analyte	mg/L	mg/L
Total Dissolved Solids (Residue, Filt	10.0	10.0

Qualifiers:

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP

MQL SUMMARY REPORT

APPENDIX E

PDP-5 CCL – Total Iron and Aluminum and CEC Laboratory Analytical Reports

November 22, 2021

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX (512) 671-3446 RE: Martin Lake PDP-5

Order No.: 2111001

Dear Will Vienne:

DHL Analytical, Inc. received 1 sample(s) on 10/30/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2111001	
WorkOrderSampleSummary 2111001	
PrepDatesReport 2111001	
AnalyticalDatesReport 2111001	
Analytical Report 2111001	
AnalyticalQCSummaryReport 2111001	
MQLSummaryReport 2111001	
Subcontract Report 2111001	

				2300	00 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222 Web: www.dblanalytical.com					CHAIN-OF-CUSTODY																					
JILMANAW ANAL	v T	i CAL				Em	veb: nail:	wv loe	vw.c in@	ania Odh	ana Ian	aiyti alvt	cal. ical	com .coi	n n												n	A.C.F.	4	05 4	
CLIENT: Golder									10/2	9/2	02	1									BO	RA	TOF	RY I	JSE	ON		AGE		0F <u>1</u>	Ċ
ADDRESS: 2201 Double	e Cree	k Dr. Suite	4004										- -				ייי		. .	ົລ	111	001									
PHONE: (512) 466-9074	4	EMAIL: P	atrick Beh	lina@a	older.com	PO#:20142271							-		101	INAC			π					=							
DATA REPORTED TO: P	at Behl	ing and Will	 Vienne			PR	OJE	ст і			ON	OR	NAI	ME:		Mar	tin	Lake	e PD	P-5											
ADDITIONAL REPORT COP	DDITIONAL REPORT COPIES TO:					CL	IENT	r pr	OJE	СТ	#	20)142	227	1					С	DLLE	СТ	OR	A	RN	ol	Do	H	ERR	ERA	-
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SER	VAT	ION		Τ			Т			L L		3 1				ŗ		T	Τ	T			٦
for TRRP report?	Lab	L=LIQUID		P=PAI	NT					N	ſ	100	1006				r 8270	□ 625	ONIA		Ū 8		ERB		ASE	30					
🗆 Yes 🛛 🖾 No	Use	S=SOIL		SL=SL	UDGE	rs			tate	SVFI	Ľ		ЪР				P PES	8270	AMM		INIT		Ē	Ĕ	& GRE	CAN					
	Only	SO=SOLID				ine			Ace	ERE	2	METH	900	8015	24.1 [C 575	PAH	Ö	PCB			ALK	- 9	o pes	RA8							
						nta			2	NPR			TPH 1	DRO	Š Š	밀로	625.1	508.3	H L L		ROM	906	202		DGAS	% WC					
Field Sample LD.		Collection	Collection	Matrix	Container	f Co		പ്പ	3 ⊑]=	° <		50	15			270 []	82 🗆 (321	Ĥ	EX CH	S 300	⊔ voc	IETALS	U U	L SS	J				
	Lad #	Date	Tane		Type	.0 #	모	Ž	VaO NaO	2 5		3TEX [TPH 10	SRO 8(/0C 82	AH 82	EST 8.	CB 80	HERB 8	ICRA 8	Ē	NOIN	CLP-S'	CLP-N		SO C	U		FIEL	O NOTES	
L.T. PERM	01	9/17/21		5						Īχ	1			Ť	1		Ť							-	╧┼	- 13	0	十	Total Fe	and Al only	
		Per Will V.								\uparrow				-					Ť						-		7	╈	KA Add (EC ner.	ノ
										Τ																+		1	Willion	1/3/211	70
										Τ	1																		pw. 975/1	<u>w</u>	Ä
											1																	\top			1
																															٦
										_				\square			ļ														
								_								_															
								+		4_																_		<u> </u>			
											-	·					<u> </u>			_					_			ــــ			4
								\rightarrow			-					_				_				-	_			+			4
										-	-	-			_		+			+	$\left - \right $			_			_	╄			4
							\vdash	+		+-	1	-		-+		_	+			+				-	+			+			4
Relinquished By: (Sign)			DATE/TIME		Receiv	ed b	y:			┽─						ME	1			TORY	USE	ON						<u> </u>			=
itterm		- 10	29/202	40	1020	FE	DE	ΞX.			(0	CALL	FIRS	T FC	OR RI	USH)		REC	EIVIN	G TE	MP (°C):		$\underline{\mathcal{Z}}$	λ_{c}	3			THEP	м #: 78	
Relinquished By: (Sign)	10	30/21	DATE/TIME	۱	AR	eff b	γ:	_	•	R	USł	H-1 C R	DAYE USH] RI -3 D	JSH-: AY IX I	2 DA	ΥD		CU	STOD	Y SE	ALS:	: [] BF	ROKE	EN		ITAC	т Жис	T USED	
Relinquished By: (Sign)	·	1	DATE/TIME		Recei	ed b	y:					ORM	AL E]	OTH	ER []	C/	ARRIE	R:		50	<u>ل</u> گر	FED					OURIER		
		POSAL @ 5	5.00 each		 □ Retur	n				10	UE	UAI	L					I				DH			RF	13	IM	AR 2	021		

	Sample	Receipt Chec	klist		
Client Name Golder			Date Receiv	ved:	10/30/2021
Work Order Number 2111001			Received by	: AH	
Checklist completed by: E.Signature	11/1/202 Date Carrier name:	1 FedEx 1day	Reviewed by	Initials	11/1/2021 Date
Shipping container/cooler in good condition?		Yes 🗸	No	Not Pres	ent
Custody seals intact on shipping container/coo	bler?	Yes		Not Pres	ent 🗹
Custody seals intact on sample bottles?		Yes	No 🗌	Not Pres	ent 🗹
Chain of custody present?		Yes 🔽	No 🗌		
Chain of custody signed when relinguished and	received?	Yes 🔽	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗸	No		
Samples in proper container/bottle?		Yes 🗸	No		
Sample containers intact?		Yes 🗹	No		
Sufficient sample volume for indicated test?		Yes 🖌	No		
All samples received within holding time?		Yes 🖌	No		
Container/Temp Blank temperature in complian	ice?	Yes 🗹	No 🗌	22.3 °C	
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vi	als submitted
Water - pH<2 acceptable upon receipt?		Yes	No	NA 🗹	LOT #
		Adjusted?		Check	ed by
Water - ph>9 (S) or ph>10 (CN) acceptable upo	on receipt?	Yes	No 🗌	NA 🗹	LOT #
		Adjusted?		Check	ed by
Any No response must be detailed in the comm	nents section below.		- All and the statement of the statement	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Client contacted:	Date contacted:		Per	son contac	ted
Contacted by:	Regarding:			- Annual Add. 2115. M Sci. Market Barry Barry Barry	
Comments:					
				99999999 - <mark> </mark>	
Corrective Action:					
·					

Page 1 of 1

Lab	orat	tory Name: DHL Analytical, Inc.						
Lab	orat	tory Review Checklist: Reportable Data						
Proje	ect Na	me: Martin Lake PDP-5 LRC	C Date: 11/22/21					
Revie	ewer l	Name: Carlos Castro Labo	oratory Work Order: 2111001					
Prep	Batcl	h Number(s): See Prep Dates Report Run	Batch: See Analytical Dates Report					
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of sam	ple acceptability upon receipt?	Χ				R1-01
		2) Were all departures from standard conditions described in an e	exception report?			Χ		
R2	OI	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the labora	atory ID numbers?	X				
D2	OI	2) Are all laboratory ID numbers cross-referenced to the correspondence of the correspon	onding QC data?	Χ				
KJ	01	1) Were all samples prepared and analyzed within holding times	9	x				
		2) Other than those results \leq MOL, were all other raw values bra	acketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		X				
		4) Were all analyte identifications checked by a peer or supervise	or?	Χ				
		5) Were sample detection limits reported for all analytes not dete	ected?	Χ				
		6) Were all results for soil and sediment samples reported on a d	ry weight basis?	Χ				
		7) Were % moisture (or solids) reported for all soil and sediment	t samples?	Χ				
		8) Were bulk soils/solids samples for volatile analysis extracted	with methanol per EPA Method 5035?			X		
	-	9) If required for the project, TICs reported?				Х		_
R4	0	Surrogate Recovery Data				V		
		1) Were surrogates added prior to extraction?	horatory OC limite?			X		
R5	OI	2) were surrogate percent recoveries in an samples within the fa	boratory QC minus?			Λ		
KJ	01	1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical proc	ess, including preparation and, if	v				
		applicable, cleanup procedures?		λ				
		4) Were blank concentrations < MDL?		Χ				
		5) For analyte(s) detected in a blank sample, was the concentration for the samples grant the 10 times the	on, unadjusted for sample specific			X		
R6	OI	Laboratory Control Samples (LCS):	e concentration in the brank sample?					
NU	01	1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, i	including prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?		Χ				
		4) Were LCS (and LCSD, if applicable) %Rs within the laborato	bry QC limits?	Χ				
		5) Does the detectability data document the laboratory's capabili	ity to detect the COCs at the MDL used	x				
		to calculate the SDLs?						
D7	OI	6) Was the LCSD RPD within QC limits (if applicable)?		Χ				
K /	01	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the M	S and MSD?	v				
		2) Were MS/MSD analyzed at the appropriate frequency?		X				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	y QC limits?		Χ			R7-03
		4) Were MS/MSD RPDs within laboratory QC limits?		Χ				
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each matr	rix?	Χ				
		2) Were analytical duplicates analyzed at the appropriate frequer	ncy?	Χ				
	O.I.	3) Were RPDs or relative standard deviations within the laborate	ory QC limits?	Χ				
K9	OI	INTEGROOD QUANTITATION LIMITS (MQLS):	torry data pagkage?	v				
		2) Do the MOLs correspond to the concentration of the lowest m	on-zero calibration standard?	A X				
		3) Are unadjusted MOLs and DCSs included in the laboratory da	ata package?	X				
R10	OI	Other Problems/Anomalies	, ······					
		1) Are all known problems/anomalies/special conditions noted in	n this LRC and ER?	Χ				
		2) Was applicable and available technology used to lower the SE	DL to minimize the matrix interference	v				
		affects on the sample results?		л				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory defined analytes, matrices and methods associated with this laboratory defined associated with the laboratory defined as a second sec	ory Accreditation Program for the ata package?	X				
L								

Lab	ora	tory Name: DHL Analytical. Inc.						
Lab	ora	tory Review Checklist (continued): Supporting I	Data					
Proje	ct Na	ame: Martin Lake PDP-5 LRC I	Date: 11/22/21					
Revie	wer	Name: Carlos Castro Labora	atory Work Order: 2111001					
Pren	Bate	h Number(s): See Prep Dates Report Run B	atch: See Analytical Dates Report					
#1	Δ2	Description		Ves	No	NA ³	NR ⁴	FR# ⁵
л S1	OI	Initial Calibration (ICAL)		103	110	ITA	INK	ER#
51	01							
		1) Were response factors and/or relative response factors for each an	halyte within QC limits?					
		2) Were percent KSDS of correlation coefficient chieffa filet?	or all analytes?					
		4) Were all points generated between the lowest and highest standard	d used to calculate the curve?					
		5) Are ICAL data available for all instruments used?	d used to calculate the curve.	X				
		6) Has the initial calibration curve been verified using an appropriate	e second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV)) and Continuing Calibration	1				
~		blank (CCB):	,					
		1) Was the CCV analyzed at the method-required frequency?		Х				
		2) Were percent differences for each analyte within the method-requ	iired QC limits?	Χ				
		3) Was the ICAL curve verified for each analyte?		Χ				
		4) Was the absolute value of the analyte concentration in the inorgan	nic CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		Χ				
~ .	_	2) Were ion abundance data within the method-required QC limits?		X				
<u>S4</u>	0	Internal Standards (IS):	1001: 20	N				
07	OI	1) Were IS area counts and retention times within the method-requir	ed QC limits?	X				
- 55	OI	Kaw Data (NELAC Section 5.5.10)	viewed by an analyst?	v				
		1) Were data associated with manual integrations flagged on the raw	v deta?					
\$6	0	Dual Column Confirmation		Λ				
50	0	1) Did dual column confirmation results meet the method-required (0C?			X		
S7	0	Tentatively Identified Compounds (TICs):	<u>.</u>					
~		1) If TICs were requested, were the mass spectra and TIC data subje	ect to appropriate checks?			X		
S8	Ι	Interference Check Sample (ICS) Results:						
		1) Were percent recoveries within method QC limits?		Χ				
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standard	Additions					
		1) Were percent differences, recoveries, and the linearity within method?	the QC limits specified in the	X				
\$10	OI	Mothod Detection Limit (MDL) Studies						
510	01	1) Was a MDL study performed for each reported analyte?		v				
		2) Is the MDL either adjusted or supported by the analysis of DCSs ²)	X				
S11	OI	Proficiency Test Reports:						
	01	1) Was the lab's performance acceptable on the applicable proficience	cv tests or evaluation studies?	X				
S12	OI	Standards Documentation	5					
		1) Are all standards used in the analyses NIST-traceable or obtained	from other appropriate sources?	Х				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification document	ted?	Χ				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Appen	dix C?	Χ				
~ 1 -	<u>.</u>	2) Is documentation of the analyst's competency up-to-date and on f	ile?	X				
<u>815</u>	OI	verification/validation Documentation for Methods (NELAC Ch	hapter 5)					
		1) Are all the methods used to generate the data documented, applicable?	, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method perform	ed?	X				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

perhat

11/22/21

Date

CLIENT:GolderProject:Martin Lake PDP-5Lab Order:2111001

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method D2216 - Percent Moisture Analysis Sub-contract - Cation Exchange Capacity analysis by method LA29B. Analyzed at ALS.

Exception Report R1-01

The sample was received and log-in performed on 10/30/21. A total of 1 sample was received. On 11/3/21 CEC was added to the sample as per the client. This was performed at the sub-contract laboratory. The sample arrived in good condition and was properly packaged.

Exception Report R7-03

For Metals analysis performed on 11/4/21 the matrix spike and matrix spike duplicate recoveries were out of control limits for Aluminum and Iron. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

_

Lab Smp ID C	lient Sample ID	Tag Number	Date Collected	Date Recved
Project: Lab Order:	Martin Lake PDP-5 2111001		Work Order Sampl	e Summary
CLIENT:	Golder			

2111001-01 L.T. PERM

Date: 22-Nov-21

09/17/21

Date Recved 10/30/2021

Lab Order:2111001Client:GolderProject:Martin Lake PDP-5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2111001-01A	L.T. PERM	09/17/21	Soil	D2216	Moisture Preparation	11/03/21 04:56 PM	102700
	L.T. PERM	09/17/21	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	11/03/21 09:21 AM	102684
	L.T. PERM	09/17/21	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	11/03/21 09:21 AM	102684

Lab Order:2111001Client:Golder

Project: Martin Lake PDP-5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2111001-01A	L.T. PERM	Soil	D2216	Percent Moisture	102700	1	11/04/21 08:46 AM	PMOIST_211103A
	L.T. PERM	Soil	SW6020B	Trace Metals: ICP-MS - Solid	102684	50	11/04/21 12:33 PM	ICP-MS5_211104A
	L.T. PERM	Soil	SW6020B	Trace Metals: ICP-MS - Solid	102684	5	11/04/21 12:08 PM	ICP-MS5_211104A
2111001-01B	L.T. PERM	Soil	LA29B	Cation Exchange Capacity	R118126	1	11/19/21 12:50 PM	SUB_211119A

DHL Ana	lytical, Inc.				D	ate: 22-	-Nov-21			
CLIENT:	Golder			Clier	nt Samp	le ID: L.T. PER	M			
Project:	Martin Lake PDP-5				La	b ID: 2111001-	-01			
Project No:	20142271			Co	llection	Date: 09/17/21				
Lab Order:	2111001				Μ	atrix: SOIL				
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
TRACE METAI	LS: ICP-MS - SOLID		SW60	20B				Analyst: SP		
Aluminum		13200	113	339		mg/Kg-dry	50	11/04/21 12:33 PM		
Iron		18500	113	339		mg/Kg-dry	50	11/04/21 12:33 PM		
CATION EXCH	IANGE CAPACITY		LA29B					Analyst: SUB		
Cation Exchang	ge Capacity	14.9	0.0250	0.0250	Ν	mEquiv/100g	1	11/19/21 12:50 PM		
PERCENT MO	ISTURE		D22	16				Analyst: MTK		

0

0

WT%

1

11/04/21 08:46 AM

3.05

Qualifiers:	ND - Not Detected at the SDL

Percent Moisture

- J Analyte detected between SDL and RL B - Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified
- See Final Page of Report for MQLs and MDLs
- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:

ANALYTICAL QC SUMMARY REPORT

Work Order:2111001Project:Martin Lake PDP-5

Golder

RunID: ICP-MS5_211026A

Sample ID: DCS1-102518	Batch ID:	102518		TestNo:	SI	W6020B		Units:	mg/	Kg
SampType: DCS	Run ID:	ICP-MS5_2	11026A	Analysis	s Date: 10	/26/2021 10:53	3:00 A	Prep Date	: 10/2	25/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Aluminum		38.3	37.5	37.50	0	102	70	130	0	0
Iron		38.7	37.5	37.50	0	103	70	130	0	0

Qualifiers:

В

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 5

Project:	Martin La	ke PDP-5					RunII): I	CP-MS5_	211104	A	
The QC data	in batch 102684 ap	plies to the	following sa	mples: 211	1001-01A							
Sample ID:	MB-102684	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	1	
SampType: I	MBLK	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/ 4	4/2021 11:58	B:00 AM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			<12.5	37.5								
Iron			<12.5	37.5								
Sample ID: I	LCS-102684	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	J	
SampType: I	LCS	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/ 4	4/2021 12:00	0:00 PM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			249	37.5	250.0	0	99.8	80	120			
Iron			249	37.5	250.0	0	99.8	80	120			
Sample ID: I	LCSD-102684	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	J	
SampType: I	LCSD	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/ 4	4/2021 12:03	3:00 PM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			246	37.5	250.0	0	98.2	80	120	1.57	25	
Iron			247	37.5	250.0	0	98.7	80	120	1.15	25	
Sample ID: 2	2111001-01A MS	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	g-dry	
SampType: I	MS	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/4	4/2021 12:25	5:00 PM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			15700	33.6	224.2	13210	1100	75	125			S
Iron			18100	33.6	224.2	17980	46.1	75	125			S
Sample ID: 2	2111001-01A MSD	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	g-dry	
SampType: I	MSD	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/4	4/2021 12:28	B:00 PM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			15300	33.9	226.2	13210	919	75	125	2.48	25	S
Iron			17400	33.9	226.2	17980	-271	75	125	4.05	25	S
Sample ID: 2	2111001-01A SD	Batch ID:	102684		TestNo	SW	6020B		Units:	mg/Kg	g-dry	
SampType: \$	SD	Run ID:	ICP-MS5	_211104A	Analysi	s Date: 11/4	4/2021 12:3	5:00 PM	Prep Date:	11/3/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	t Qual
Aluminum			13100	1700	0	13230				1.33	20	
Iron			18600	1700	0	18530				0.129	20	

ANALYTICAL QC SUMMARY REPORT

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 2 of 5

- J Analyte detected between SDL and RL

CLIENT:

Work Order:

Golder

2111001

CLIENT:	Golder				ΔN	JAL VT	ICAL	oc si	IMMA	RV REPOI	RT
Work Order:	2111001										N I
Project:	Martin La	ke PDP-5					RunII): I	CP-MS5	_211104A	
Sample ID: 21110	01-01A PDS	Batch ID:	102684		TestNo	: SW	6020B		Units:	mg/Kg-dry	
SampType: PDS		Run ID:	ICP-MS	5_211104A	Analys	is Date: 11/4	/2021 12:38	8:00 PM	Prep Date	: 11/3/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit	Qual
Aluminum			24100	339	11310	13230	95.8	75	125		
Iron			29800	339	11310	18530	99.7	75	125		

Page 3 of 5

Qualifiers:

В

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

CLIENT: Work Ord	Golder er: 2111001				AN	ALYT	ICAL (QC SU	U MMA	RY REPO	RT
Project:	Martin La	ike PDP-5					RunII): I	CP-MS5	_211104A	
Sample ID:	ICV-211104	Batch ID:	R11787	7	TestNo	: swe	6020B		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS	5_211104A	Analysi	is Date: 11/4	/2021 11:41	:00 AM	Prep Date	e:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit	t Qual
Aluminum			2.40	0.0300	2.50	0	95.8	90	110		
Iron			2.49	0.100	2.50	0	99.6	90	110		
Sample ID:	LCVL-211104	Batch ID:	R11787	7	TestNo	: SW6	6020B		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	5_211104A	Analysi	is Date: 11/4	/2021 11:48	3:00 AM	Prep Date	e:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit	t Qual
Aluminum			0.0938	0.0300	0.100	0	93.8	80	120		
Iron			0.0989	0.100	0.100	0	98.9	80	120		
Sample ID:	CCV1-211104	Batch ID:	R11787	7	TestNo	: swe	6020B		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	5_211104A	Analysi	is Date: 11/4	/2021 12:41	:00 PM	Prep Date): 	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit	t Qual
Aluminum			4.86	0.0300	5.00	0	97.2	90	110		
Iron			5.08	0.100	5.00	0	102	90	110		

Qualifie	rs:
----------	-----

CLIENT:

Golder

В Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

Page 4 of 5

R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

17

CLIENT:	Golder				۸N	ΑΙ ΥΤΙ	CAT (FPORT
Work Order:	2111001								UNINA		
Project:	Martin Lal	ke PDP-5					RunII):	PMOIST_	211103	A
The QC data in batc	h 102700 ap	plies to the	following sa	mples: 211	1001-01A						
Sample ID: 211023	9-11D-DUP	Batch ID:	102700		TestNo	D2216	5		Units:	WT%	
SampType: DUP		Run ID:	PMOIST_	211103A	Analysi	s Date: 11/4/2	021 8:46:	00 AM	Prep Date:	11/3/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD R	PDLimit Qual
Percent Moisture			14.9	0	0	14.80				0.539	30

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits

Page 5 of 5

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

QLOUIMA
OL SUMMAI
•

TestNo: SW6020B Analyte	MDL	MQL mg/Kg
	mg/Kg	
Aluminum	12.5	37.5
Iron	12.5	37.5

RY REPORT

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

November 19, 2021

John Dupont DHL Analytical 2300 Double Creek Drive Round Rock, TX 78664

Work Order: HS21110378

Laboratory Results for: 2111001

Dear John Dupont,

ALS Environmental received 1 sample(s) on Nov 04, 2021 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: DAYNA.FISHER Dane J. Wacasey

Page 1 of 12
Client: Project: Work Order:	DHL Analytical 2111001 HS21110378				SAMPLE SUM	MARY
Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS21110378-01	L.T. PERM	Soil		17-Sep-2021 00:00	04-Nov-2021 10:00	

Client:DHL AnalyticalProject:2111001Work Order:HS21110378

Metals by Method La29B CEC

Batch ID: R396071

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Metals by Method La29B CEC Na

Batch ID: 172574

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Page 3 of 12	
RIGHT SOLUTION22 RIGHT PARTNER	

CASE NARRATIVE

Client:	DHL Analytical			ANALYTICAL REPORT			
Project:	2111001				WorkOr	der:HS21	110378
Sample ID:	L.T. PERM				Lab	DID:HS21	110378-01
Collection Date:	17-Sep-2021 0	0:00		Matrix:Soil			
ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
LA29B NA CATION EXCHANG CAPACITY	E I	Method:	La29B CEC				Analyst: JHD
Na Cation Exchange Capacity	14.9	n	0.0250	0.0250	meq/100-g	1	19-Nov-2021 12:50
LA29B AMMONIUM ACETATE EXTRACTABLE NA FOR CEC	. Me	ethod:La	a29B CEC Na		Prep:La29B CEC	Na / 16-Nov-	2021 Analyst: JHD
Sodium	3,430	n	49.8	49.8	mg/Kg	10	18-Nov-2021 17:09

Note: See Qualifiers Page for a list of qualifiers and their explanation.

						Weight / Prep Log
Client:	DHL Analytical					
Project:	2111001					
WorkOrde	:HS21110378					
Batch ID: 1	72574	Start Da	te: 16 Nov 20	21 13:09	End Date: 18 Nov	2021 09:00
Method: LA	DNR 29B NA CATIO	N EXCHANGE CA	PACITY		Prep Code: LA29B	CEC NAPR
Sample ID	Conta	iner Sample Wt/Vol	Final Volume	Prep Factor		
HS21110378-)1	5.0181 (g)	100 (mL)	19.93	8-oz glass, Neat	

Client: Project: WorkOrder:	DHL An 211100 ⁻ HS2111	alytical 1 0378				DATES RE	PORT
Sample ID	Client Sam	p ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 172574	(0)	Test Name :	LA29B AMMONIUM AC	ETATE EXTRACTABI	LE NA FOR CEC	Matrix: Soil	
HS21110378-01	L.T. PERM		17 Sep 2021 00:00		16 Nov 2021 13:09	18 Nov 2021 17:09	10
Batch ID: R39607	71(0)	Test Name :	LA29B NA CATION EX	CHANGE CAPACITY		Matrix: Soil	
HS21110378-01	L.T. PERM		17 Sep 2021 00:00			19 Nov 2021 12:50	1

Client:DHL AnalyticalProject:2111001WorkOrder:HS21110378

QC BATCH REPORT

Batch ID:	172574(0)	Instrumer	nt:	ICPMS06	M	ethod:	LA29B AMM EXTRACTAE	ONIUM ACET	ATE CEC	
MBLK	Sample ID:	MBLK-172574		Units:	mg/Kg	An	alysis Date:	18-Nov-2021	17:07	
Client ID:		Run ID:	ICPI	MS06_395970	SeqNo: 6	381137	PrepDate:	16-Nov-2021	DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit Qual
Sodium		U	5.00							
DUP	Sample ID:	HS21110615-05DUP		Units:	mg/Kg	An	alysis Date:	18-Nov-2021	17:13	
Client ID:		Run ID:	ICPI	MS06_395970	SeqNo: 6	381140	PrepDate:	16-Nov-2021	DF	: 10
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit Qual
Sodium		4734	49.9					4845	2.3	1 30
The following	g samples were analyze	d in this batch: HS21110378	8-01							

ALS Houston, US

Client:	DHL Analytical	QUALIFIERS,
Project:	2111001	ACRONYMS, UNITS
WorkOrder:	HS21110378	
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
Μ	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	21-022-0	26-Mar-2022
Dept of Defense	PJLA L20-507-R2	22-Dec-2021
Florida	E87611-33	30-Jun-2022
Illinois	2000322021-7	09-May-2022
Kansas	E-10352 2021-2022	31-Jul-2022
Kentucky	123043, 2021-2022	30-Apr-2022
Louisiana	03087, 2021-2022	30-Jun-2022
North Carolina	624-2021	31-Dec-2021
Texas	T104704231-21-28	30-Apr-2022

					Sample Receipt Checklist
Work Order ID:	HS21110378		Date/7	Fime Received:	<u>04-Nov-2021 10:00</u>
Client Name:	DHL		Recei	ved by:	Nilesh D. Ranchod
Completed By:	: /S/ Jared R. Makan	06-Nov-2021 09:06	Reviewed by: ///	Dane J. Wacasey	, 11-Nov-2021 13:00
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	Soil		Carrier name:	UPS	
Shipping contai Custody seals in Custody seals in VOA/TX1005/T. Chain of custod Chain of custod Samplers name Chain of custod Samples in prop Sample contain Sufficient samp All samples reco Container/Temp	ner/cooler in good condition? ntact on shipping container/coolentact on sample bottles? X1006 Solids in hermetically sea y present? y signed when relinquished and present on COC? y agrees with sample labels? per container/bottle? ers intact? le volume for indicated test? eived within holding time? o Blank temperature in complian	er? lled vials? received? ce?	Yes Ves Ves Ves Ves Ves Ves Ves Ves Ves V	No	Not Present Not Present Not Present Not Present 1 Page(s) COC IDs:2111001
Temperature(s)	/Thermometer(s):		14.7-°C UC/C		IR31
Date/Time sam	ple(s) sent to storage:		BOX 11/06/2021 09·10		
Water - VOA via Water - pH acce pH adjusted? pH adjusted by:	als have zero headspace? eptable upon receipt?		Yes Yes Yes	No No No	o VOA vials submitted N/A N/A
Login Notes:	Collection time not listed on CC	C & sample container, lo	ogged in with a collecti	on time of 00:00am	l.
Client Contacte	d:	Date Contacted:		Person Conta	acted:
Contacted By:		Regarding:			
Comments: Corrective Actic	on:				

Date: 19-Nov-21

ALS Houston, US

DHL Analytical, Inc. 2300 Double Creek Drive Round Rock, TX 78664 TEL: (512) 388-8222 Work Order: 2111001	FAX:	·			CHAIN-O	F-CUSTODY RECOR	Page I of I
Subcontractor: ALS Laboratory Group P.O. Box 975444 Houston, Texas 77099		TI F. A	EL: (281) 530-5656 AX: cct #:	5			03-Nov-21
						Requested Tests	
Sample ID	Matrix	DHL#	Date Collected	Bottle Type	CEC		
·					LA29B		
L.T. PERM	Soil	01B	09/17/21	80ZGLJAR	1		

				HS211 DHL An	10378 alytical
				2111	
lease analyze these samples with a uality Control Package Needed: TR MAIL report to both cac@dhlanalytic all John DuPont if you have questior	Standard Turnaround Time. RP - SEND PDF & Excel EDD I al.com & dupont@dhlanalytical is.	Please .com			
	Date/Time				Date/Ti
· ~~~~	11/3/21 1800	Received by:	Na	ilular	10.2
- -	· · · · · · · · · · · · · · · · · · ·	Received by:			
					and the second secon
CED C	Please analyze these samples with a Quality Control Package Needed: TR EMAIL report to both cac@dhlanalytic Call John DuPont if you have question	Please analyze these samples with a Standard Turnaround Time. Quality Control Package Needed: TRRP - SEND PDF & Excel EDD I EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical Call John DuPont if you have questions. Date/Time	Please analyze these samples with a Standard Turnaround Time. Quality Control Package Needed: TRRP - SEND PDF & Excel EDD Please EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions. Date/Time 11/3/2(1800) Received by: Received by:	Please analyze these samples with a Standard Turnaround Time. Quality Control Package Needed: TRRP - SEND PDF & Excel EDD Please EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions. Date/Time 11/3/2(1800) Received by: MA Received by:	HS211 DHL Ar 2111 Image: Standard Turnaround Time. Quality Control Package Needed: TRRP - SEND PDF & Excel EDD Please EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions. Image: Date/Time Image: Needed: TRRP - SEND PDF & Excel EDD Please MAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions. Image: Date/Time Image: Needed to the standard tot to the standard tot tot to the standard to the standard tot tot

BOX NOV 0 5 2021

and the second second

RIGHT SOLUTION31 RIGHT PARTNER

APPENDIX F

90th Percentile Impoundment Concentrations from 2014 EPA Risk Report quartiles developed were then combined into a single distribution representing all sites and all waste types, from which a 90th percentile concentration was drawn.

Constituent	Impoundment Pore Water (mg/L)	Impoundment Wastewater (mg/L)	Whole Waste (mg/kg)
Aluminum	12.3	2.3	91,500
Ammonia	5.1	_	-
Antimony	0.04	0.02	47.0
Arsenic	0.78	0.13	106
Barium	0.21	0.43	1,103
Beryllium	0.001	0.001	18.3
Boron	97.8	36.2	388
Cadmium	0.06	0.003	3.8
Calcium	592	577	114,750
Chloride	2,023	345	384
Chromium	0.2	0.03	153
Cobalt	0.05	0.02	65.9
Copper	0.13	0.01	226
Fluoride	21.3	-	25
Iron	11.9	0.04	42,426
Lanthanum	-	-	58.6
Lead	0.10	0.0006	75.3
Lithium	0.45	1.99	-
Magnesium	174	1,990	17,550
Manganese	1.8	0.56	413
Mercury	0.000007	0.00003	1.1
Molybdenum	7.1	0.42	31.0
Nickel	0.3	0.07	199
Nitrate	13.7	-	0.25
Nitrite	5.0	-	-
Potassium	221	40	9,622
Selenium	0.32	0.10	18.2
Silicon	19.0	12.7	262,700
Silver	0.005	0.0001	11.1
Sodium	3,288	743	3,557

Table 3-1.	90th Percentile Concentrations Used for Screening Analysis
	······································

Constituent	Impoundment Pore Water (mg/L)	Impoundment Wastewater (mg/L)	Whole Waste (mg/kg)
Strontium	9.1	4.3	891
Sulfate	4,398	10,400	9,630
Sulfide	-	-	26.2
Sulfur	3,842	-	36,000
Thallium	0.003	0.009	33.9
Uranium	0.01	0.004	5.0
Vanadium	0.52	0.23	562
Zinc	0.19	0.06	269

Table 3-1.	90th Percentile Concentrations Used for Screening Analysis
10.010 0 1.	

These 90th percentile values represent the concentrations present in and released from CCR wastes. Impoundment pore water is the water present within interstitial spaces of the settled CCRs. Impoundment wastewater is the free water ponded on top of the settled CCR waste. Whole waste represents the concentrations present within CCRs at the time of generation. However, most receptors will not come in direct contact with CCR wastes. Instead, receptors are exposed to environmental media, such as air; soil and water, that have been contaminated by releases from these wastes. To estimate the concentrations that may be present in these environmental media, EPA used conservative assumptions to account for fate and transport of COPCs through the environment. The calculation of these media-specific exposure concentrations are discussed in the following subsections.

3.2 Ambient Air Screening

This subsection summarizes the screening for exposure pathways associated with two management scenarios: uncontrolled and controlled releases. Uncontrolled releases occur when no action is taken to reduce particulate emissions. Controlled releases occur when management practices are put in place to minimize the rate of particulates emissions. The controls considered in this analysis include wetting and/or the use of surfactants.¹⁰ Yet, even with the best available management practices, some emissions may still occur. Relevant exposure pathways include human inhalation of particulate matter and any COPCs contained therein. The greatest source of these pathways are landfills during operation, as water cover for impoundments and postclosure cap for landfills will limit the release of particulate matter. Therefore, EPA screened these pathways for landfills and the results were also used to identify any COPCs for surface impoundments.

¹⁰Surfactants refer to compounds that lower the surface tension (or interfacial tension) between a liquid and a solid, and can increase the effectiveness of water as a dust control mechanism.

APPENDIX G

Background Groundwater Laboratory Analytical Reports

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX (512) 671-3446 RE: Luminant-MLSES Ash Ponds

Order No.: 1905168

Dear Will Vienne:

DHL Analytical, Inc. received 7 sample(s) on 5/15/2019 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-19-24

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1905168	
WorkOrderSampleSummary 1905168	
PrepDatesReport 1905168	
AnalyticalDatesReport 1905168	
Analytical Report 1905168	
AnalyticalQCSummaryReport 1905168	
Subcontract Report 1905168	

	Y T			230 I	0 Double (Phone (51)	2) 3	ek D 88- ۲ E-ľ	Or.∎ 822 Web Mail:	Ro 2 : wi i log	un FA ww. in@	d Ro X (5 . <i>dhla</i> odhla	ck, T 2) 3 naly naly	X 78 88-8 tical tical	3664 3229 .com .com		he		2					ΞH	A	ñ IP	∘ { √-	36 [:] 0	47 F-('9 CL	IST	OD	١Y
CLIENT: GOLDER			£14 -			<u> </u>			_	.,	.	DA	TE: _	S	-14	4-1	19			<u>. </u>							PA	GE _	<u> </u>	_OF_		_
ADDRESS: 220 0	OUBL	<u>E CREE</u>			<u>bund</u>	20C 1)_	Ж, . 24	<u>12</u>	7	66	64	PO	#:]рн	IL W	OR	< OF	RDE	R #	- 1	90	516.	8	_		_
DATA REPORTED TO: ADDITIONAL REPORT	د ד د ~ ר COPI	μις Ες το:	-AX/E-I V/EA	MAIL:_ (//E	312. 4	1	- 51	40	•		-	PR(CLE	OJEC ENT I	T LO PROJ	CAT ECT	'ION '#:_	1 OR 19	NAN [2	ИЕ: 2 :	<u>Lyı</u> 26	n//v 2-	<u>АЛ</u> С	<u>/ [-</u> _ CO		<u>ηι</u> :ct	, 5 OR:	<u>ک</u> ء ل	_A _B	ISH RA	PON 1701	(DS 1	-
Authorize 5% surcharge for TRRP Report? Yes No	S=SC W=W A=AI L=LK SE=S	DIL F VATER S IR C QUID S EDIMENT	P=PAIN SL=SLU D=OTH SO=SOI	T DGE ER LID		ainers	PR	ESEF				Ŀ		LIND LIND		50 50 50 50 50 50 50 50 50 50 50 50 50 5				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				[] [] [] [] [] [] [] [] [] [] [] [] [] [
Field Sample I.D.	DHL Lab #	Date	Time	Matrix	Container Type	# of Cont	HCI	HNO ³		LINDRECE	ALL ALL							NI C				5) 5) 5) 2)							FIELI) NOTE	S	
H-31	01	5-14-19	0740	ω		7)		Ì				Í									X	X	X	_					
H-32	02		0825	ω		7			X	<u> </u>														X	x	<u> </u> /						
H-27	03		0940	W		1			<u> </u>									_						X	X	<u> </u>						
H-29	04])25	W		7			X															X	X	<u>y</u>	4					
H-28	05		1230	W		7			7															X	X	X						
H-20	ol		1425	W		7)	(•									X	X	<u> </u>	4					
H-33	07	•	1530	W		1)	Ì														X	X	X						
										ĺ																						
																														-		
								Τ		Γ						Τ											·					
	1		1																								:		_			
		a sector se	A. 16																								1					-
RELINQUISITED BY: (Signature)	NIT AT A SECOND	C	DATE/T	TIME A	RECEIVE	BY:	(Sign	ature)	.	L	L	LI		TURI	N AF	ROU	NDT	IME	LA	BOR	ATC	RY	USE,	ON	LY:	21	SL		74			
RELINQUISTED BY: (Signature)	7		DATE/I	IME	RECEIVE	<u>к</u>) ВҮ:	🗶 (Sign	ature)	1					RUSH		CALL	LFIRS	ST .	RE	CEIV	ING	ΤΈΜ	P:	†り	U	-	THE	RM #	: 10	• 	-	
Fed E	2	5/	15/1	90	943 62	V PV								וDA ו אמס כ		CAL	l FIR:	51			DY S	EAL	S:		ROI	KEN ନ୍ଦ			ACT	M D	DT USE	.D
RELINQUISHED BY: (Signature)		·	DATE/1	INTE	RECEIVE	στ	ເວາgn	ature)						NOR	MAL	Ú.				COU	к: RIER		UNE.	STA ₹Y	к	Ψľ	FEDI	=X • ~~			01HE	к
· .	C	DHL DISPO	SAL @ \$.	5.00 ea	ch 🗆 A	etur	'n					3		OTHE	R□	<u> </u>				HAN	D D)						[FC		

Eric Lau

From:	John DuPont
Sent:	Tuesday, May 28, 2019 11:35 AM
To:	Eric Lau
Subject:	FW: CCR Analysis

<u>Appendix III Parameters:</u> Metals (Ca and B) Anions (Cl, F, and SO4) TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl) Ra-226 Ra-228

From: Vienne, Will [mailto:William_Vienne@golder.com]
Sent: Tuesday, April 09, 2019 12:48 PM
To: John DuPont <dupont@dhlanalytical.com>
Subject: CCR Analysis

Sample Receipt Checklist											
Client Name Golder				Date Receiv	/ed:	5/15/2019					
Work Order Number 1905168				Received by	EL						
Checklist completed by: Signature	5/15/201 Date Carrier name	9 <u>FedE</u>	x 1day	Reviewed by	Initials	5/15/2019 Date					
Shipping container/cooler in good condition?		Yes	\checkmark	No	Not Presen	t 🗔					
Custody seals intact on shippping container/cool	ler?	Yes		No 🛄	Not Presen	t 🗹					
Custody seals intact on sample bottles?		Yes		No	Not Presen	t 🗹					
Chain of custody present?		Yes	$\mathbf{\overline{\mathbf{V}}}$	No							
Chain of custody signed when relinquished and	received?	Yes	\checkmark	Νο							
Chain of custody agrees with sample labels?		Yes		No							
Samples in proper container/bottle?		Yes		No							
Sample containers intact?		Yes	V	No							
Sufficient sample volume for indicated test?		Yes		No							
All samples received within holding time?		Yes	\checkmark	No							
Container/Temp Blank temperature in compliance	ce?	Yes	\checkmark	No	4.5 °C						
Water - VOA vials have zero headspace?		Yes	\checkmark	No 💭	No VOA vials	submitted					
Water - pH<2 acceptable upon receipt?		Yes		Νο	NA 🗔 🛛 L	.OT# 11837					
		Adju	sted? //	20	Çhecked	by EL					
Water - ph>9 (S) or ph>10 (CN) acceptable upo	n receipt?	Yes	[]	No	NA 🗹 🛛 L	.OT #					
		Adju	sted?		Checked	by					
Any No response must be detailed in the comm	ents section below.										
Client contacted	Date contacted:			Per	son contacted	1					
Contacted by:	Regarding:										
Comments:											
			·····								
			<u></u>								

Page 1 of 1

CLIENT:GolderProject:Luminant-MLSES Ash PondsLab Order:1905168

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method SW7470A - Mercury Analysis Method E300 - Anions Analysis Method M2320 B - Alkalinity Analysis Method M3500-Fe D - Ferrous Iron Analysis (this parameter is not NELAP certified) Method M3500-Fe D - Ferric Iron (calculation) (this calculation is not NELAP certified). Method M4500-P E - Orthophosphate Analysis Method M2540C - TDS Analysis Sub-contract - Radium-228 and Radium-226 analyses by methods E904 and SM 7500 Ra B M. Analyzed at Pace Analytical.

LOG IN

The samples were received and log-in performed on 5/15/19. A total of 7 samples were received. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 5/20/19 and 5/21/19 the matrix spike and matrix spike duplicate recoveries were out of control limits for a total of four analytes. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis peformed on 5/20/19 LCVL6-190520 was slightly above control limits for Sodium. This is flagged accordingly. The associated CCV6-190520 was within control limits for this analyte. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis performed on 5/15/19 (batch 90908) the matrix spike and matrix spike duplicate recoveries (1905167-02 MS/MSD) were out of control limits for Chloride and Sulfate. This was due to matrix effect. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

FERRIC IRON (CALCULATION)

CLIENT:	Golder	
Project:	Luminant-MLSES Ash Ponds	CASE NARRATIVE
Lab Order:	1905168	

For Ferric Iron calculation the Ferrous Iron result was slightly higher than the total Iron result for sample H-31. This is within the acceptable variation limits. No further corrective actions were taken.

_

Date: 14-Jun-19

CLIENT: Project: Lab Order:	Golder Luminant-MLSES 1905168	Ash Ponds	Work Order Sample Summary						
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved					
1905168-01	H-31		05/14/19 07:40 AM	5/15/2019					
1905168-02	H-32		05/14/19 08:25 AM	5/15/2019					
1905168-03	H-27		05/14/19 09:40 AM	5/15/2019					
1905168-04	H-29		05/14/19 11:25 AM	5/15/2019					
1905168-05	H-28		05/14/19 12:30 PM	5/15/2019					
1905168-06	H-26		05/14/19 02:25 PM	5/15/2019					
1905168-07	H-33		05/14/19 03:30 PM	5/15/2019					

1905168

Luminant-MLSES Ash Ponds

Golder

Lab Order:

Client:

Project:

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1905168-01A	H-31	05/14/19 07:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
	H-31	05/14/19 07:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-01B	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
	H-31	05/14/19 07:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-01C	H-31	05/14/19 07:40 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/16/19 09:16 AM	90935
	H-31	05/14/19 07:40 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-31	05/14/19 07:40 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-02A	H-32	05/14/19 08:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
	H-32	05/14/19 08:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-02B	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-02C	H-32	05/14/19 08:25 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-32	05/14/19 08:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-32	05/14/19 08:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-32	05/14/19 08:25 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-32	05/14/19 08:25 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-03A	H-27	05/14/19 09:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-03B	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959

Page 1 of 3

Lab Order:

Client:

1905168 Golder

Project: Luminant-MLSES Ash Ponds

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1905168-03B	H-27	05/14/19 09:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-03C	H-27	05/14/19 09:40 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-27	05/14/19 09:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-27	05/14/19 09:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-27	05/14/19 09:40 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-27	05/14/19 09:40 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-04A	H-29	05/14/19 11:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-04B	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-04C	H-29	05/14/19 11:25 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-29	05/14/19 11:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-29	05/14/19 11:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-29	05/14/19 11:25 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-29	05/14/19 11:25 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-05A	H-28	05/14/19 12:30 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-05B	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-05C	H-28	05/14/19 12:30 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-28	05/14/19 12:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-28	05/14/19 12:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-28	05/14/19 12:30 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-28	05/14/19 12:30 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-06A	H-26	05/14/19 02:25 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-06B	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959

Page 2 of 3

Lab Order:1905168Client:Golder

It: Goldel

Project: Luminant-MLSES Ash Ponds

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1905168-06B	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-26	05/14/19 02:25 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-06C	H-26	05/14/19 02:25 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-26	05/14/19 02:25 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-26	05/14/19 02:25 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-26	05/14/19 02:25 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-26	05/14/19 02:25 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-07A	H-33	05/14/19 03:30 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-07B	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-07C	H-33	05/14/19 03:30 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-33	05/14/19 03:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-33	05/14/19 03:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-33	05/14/19 03:30 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-33	05/14/19 03:30 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953

Lab Order: 1905168

Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID	
1905168-01A	H-31	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-31	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:55 PM	UV/VIS_2_190520A	
	H-31	Aqueous	M3500-Fe D	Ferrous Iron	91002	100	05/20/19 04:11 PM	UV/VIS_2_190520A	
1905168-01B	H-31	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:16 AM	CETAC2_HG_190522 A	
	H-31	Aqueous	SW7470A	Mercury Total: Aqueous	91017	5	05/22/19 11:21 AM	CETAC2_HG_190522 A	
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:43 PM	ICP-MS4_190520B	
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	50	05/21/19 12:54 PM	ICP-MS5_190521A	
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:51 PM	ICP-MS5_190521A	
1905168-01C	H-31	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:13 PM	TITRATOR_190516A	
	H-31	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:27 PM	IC2_190515A	
	H-31	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 05:55 PM	IC2_190515A	
	H-31	Aqueous	E300	Anions by IC method - Water	90935	100	05/16/19 05:42 PM	IC4_190516A	
	H-31	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 02:47 PM	UV/VIS_2_190515B	
	H-31	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	
1905168-02A	H-32	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-32	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:55 PM	UV/VIS_2_190520A	
	H-32	Aqueous	M3500-Fe D	Ferrous Iron	91002	5	05/20/19 04:11 PM	UV/VIS_2_190520A	
1905168-02B	Н-32	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:27 AM	CETAC2_HG_190522 A	
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:53 PM	ICP-MS5_190521A	
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 12:56 PM	ICP-MS5_190521A	
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:45 PM	ICP-MS4_190520B	
1905168-02C	H-32	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:15 PM	TITRATOR_190516A	
	H-32	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:43 PM	IC2_190515A	
	Н-32	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:11 PM	IC2_190515A	
	Н-32	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B	
	H-32	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	

Lab Order: 1905168

Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID		Analysis Date	Run ID	
1905168-03A	H-27	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-27	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:56 PM	UV/VIS_2_190520A	
1905168-03B	H-27	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:29 AM	CETAC2_HG_190522	
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:47 PM	ICP-MS4_190520B	
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 12:59 PM	ICP-MS5_190521A	
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:14 PM	ICP-MS5_190521A	
1905168-03C	H-27	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:20 PM	TITRATOR_190516A	
	H-27	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:59 PM	IC2_190515A	
	H-27	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:27 PM	IC2_190515A	
	H-27	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B	
	H-27	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	
1905168-04A	H-29	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-29	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:56 PM	UV/VIS_2_190520A	
1905168-04B	Н-29	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:31 AM	CETAC2_HG_190522 A	
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:49 PM	ICP-MS4_190520B	
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:55 PM	ICP-MS5_190521A	
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	20	05/21/19 01:01 PM	ICP-MS5_190521A	
1905168-04C	H-29	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:23 PM	TITRATOR_190516A	
	H-29	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:15 PM	IC2_190515A	
	H-29	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:43 PM	IC2_190515A	
	H-29	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B	
	H-29	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	
1905168-05A	H-28	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-28	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:57 PM	UV/VIS_2_190520A	
1905168-05B	H-28	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:34 AM	CETAC2_HG_190522 A	
	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	20	05/21/19 01:03 PM	ICP-MS5_190521A	

Lab Order: 1905168

Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID	
1905168-05B	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:57 PM	ICP-MS5_190521A	
	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:51 PM	ICP-MS4_190520B	
1905168-05C	H-28	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:27 PM	TITRATOR_190516A	
	H-28	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:31 PM	IC2_190515A	
	H-28	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:59 PM	IC2_190515A	
	H-28	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B	
	H-28	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	
1905168-06A	H-26	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002		05/24/19	UV/VIS_2_190524A	
	H-26	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:57 PM	UV/VIS_2_190520A	
1905168-06B	H-26	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:36 AM	CETAC2_HG_190522 A	
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:53 PM	ICP-MS4_190520B	
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 01:05 PM	ICP-MS5_190521A	
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:16 PM	ICP-MS5_190521A	
1905168-06C	H-26	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:42 PM	TITRATOR_190516A	
	H-26	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:47 PM	IC2_190515A	
	H-26	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 07:15 PM	IC2_190515A	
	H-26	Aqueous	М4500-Р Е	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B	
	H-26	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D	
1905168-07A	H-33	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A	
	H-33	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:58 PM	UV/VIS_2_190520A	
1905168-07B	H-33	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:38 AM	CETAC2_HG_190522 A	
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:54 PM	ICP-MS4_190520B	
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 01:08 PM	ICP-MS5_190521A	
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:19 PM	ICP-MS5_190521A	
1905168-07C	H-33	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:49 PM	TITRATOR_190516A	
	H-33	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 04:03 PM	IC2_190515A	
	H-33	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 07:31 PM	IC2_190515A	

Page 3 of 4

Project:	Luminant-MLSE	S Ash Ponds	
Client:	Golder		
Lab Order:	1905168		

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905168-07C	H-33	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B
	H-33	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D

Date: 14-Jun-19

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-03 Project No: 19122262-C Collection Date: 05/14/19 09:40 AM	CLIENT:	Golder	Client Sample ID: H-27	
Project No: 19122262-C Collection Date: 05/14/19 09:40 AM	Project:	Luminant-MLSES Ash Ponds	Lab ID: 1905168-03	
	Project No:	19122262-C	Collection Date: 05/14/19 09:40 AM	
Lab Order:1905168Matrix: AQUEOUS	Lab Order:	1905168	Matrix: AQUEOUS	

Analyses	Result MDL RL Qu		Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: RO
Antimony	<0.00800	0.000800	0.00250		mg/L	1	05/20/19 03:47 PM
Arsenic	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Barium	0.0208	0.00300	0.0100		mg/L	1	05/20/19 03:47 PM
Beryllium	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Boron	0.350	0.0100	0.0300		mg/L	1	05/21/19 02:14 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Calcium	61.8	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Cobalt	<0.00300	0.00300	0.00500		mg/L	1	05/20/19 03:47 PM
Iron	0.0711	0.0300	0.100	J	mg/L	1	05/20/19 03:47 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Lithium	0.0678	0.00500	0.0100		mg/L	1	05/20/19 03:47 PM
Magnesium	47.3	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:14 PM
Potassium	3.01	0.100	0.300		mg/L	1	05/20/19 03:47 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Sodium	123	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:47 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:29 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	132	3.00	10.0		mg/L	10	05/15/19 02:59 PM
Fluoride	0.159	0.100	0.400	J	mg/L	1	05/15/19 06:27 PM
Nitrate-N	0.658	0.100	0.500		mg/L	1	05/15/19 06:27 PM
Sulfate	406	10.0	30.0		mg/L	10	05/15/19 02:59 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	49.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Total (As CaCO3)	49.0	20.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
FERRIC IRON (CALCULATED)		M3500	-FE D				Analyst: CAC
Iron, Ferric	0.0711	0.0500	0.100	JN	mg/L	1	05/24/19
FERROUS IRON		M3500	-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	Ν	mg/L	1	05/20/19 03:56 PM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level
	DF	Dilution Factor
	J	Analyte detected between MDL and RL
	ND	Not Detected at the Method Detection Limit

- ND
- Spike Recovery outside control limits S

- С Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- Ν Parameter not NELAP certified

Date: 14-Jun-19

CLIENT:	Golder		Client Sample ID: H-27							
Project:	Luminant-MLSES A	Ash Ponds	Lab ID: 1905168-03							
Project No:	19122262-C		Collection Date: 05/14/19 09:40 AM							
Lab Order: 1905168			Matrix: AQUEOUS							
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed			
ORTHOPHOSPHATE		0.426	M4500	-P E	~~~~~//	4	Analyst: CC			
Phosphorus, Total Orthophosphate (As P)		0.126	0.0300	0.100	mg/∟	I	05/15/19 12:49 PM			
TOTAL DISSO	TOTAL DISSOLVED SOLIDS		M2540C				Analyst: JS			
Total Dissolved Solids (Residue, Filterable)		897	10.0	10.0	mg/L	1	05/17/19 11:40 AM			

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Page 1 of 25

CLIENT:		Golder					ΔΝΔ	ілті	CAL)C SI	IMMAR	VR	EPORT
Work Ord	ler:	1905168											
Project:	-	Luminant-I	MLSES	Ash Ponds					RunIE): C	CETAC2_H	IG_19	0522A
The QC dat 06B, 19051	a in batch 68-07B	91017 appl	lies to the	following sar	mples: 1905 [,]	168-01B, ´	905168-	-02B, 190	5168-03B,	1905168-	04B, 1905168	3-05B, 19	905168-
Sample ID	MB-9101	7	Batch ID	: 91017		Те	stNo:	SW7	470A		Units:	mg/L	
SampType:	MBLK		Run ID:	CETAC2	_HG_19052	2 A An	alysis Da	ate: 5/22/	2019 10:02	:31 AM	Prep Date:	5/21/20)19
Analyte				Result	RL	SPK val	Je Re	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury			<	0.0000800	0.000200								
Sample ID	LCS-910	17	Batch ID	91017		Te	stNo:	SW7	470A		Units:	mg/L	
SampType:	LCS		Run ID:	CETAC2	_HG_19052	2A An	alysis Da	ate: 5/22/	2019 10:04	:46 AM	Prep Date:	5/21/20)19
Analyte				Result	RL	SPK val	Je Ro	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury				0.00187	0.000200	0.0020)	0	93.5	85	115		
Sample ID	LCSD-91	017	Batch ID	: 91017		Te	stNo:	SW7	470A		Units:	mg/L	
SampType:	LCSD		Run ID:	CETAC2	_HG_19052	2 A An	alysis Da	ate: 5/22/	2019 10:07	:02 AM	Prep Date:	5/21/20)19
Analyte				Result	RL	SPK val	Je Ro	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury				0.00186	0.000200	0.0020)	0	93.0	85	115	0.536	15
Sample ID	1905168	-01B MS	Batch ID	: 91017		Те	stNo:	SW7	470A		Units:	mg/L	
SampType:	MS		Run ID:	CETAC2	_HG_19052	2 A An	alysis Da	ate: 5/22/	2019 11:23	:23 AM	Prep Date:	5/21/20	019
Analyte				Result	RL	SPK val	Je Ro	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury				0.00196	0.00100	0.0020)	0	97.8	80	120		
Sample ID	1905168	-01B MSD	Batch ID	: 91017		Te	stNo:	SW7	470A		Units:	mg/L	
SampType:	MSD		Run ID:	CETAC2	_HG_19052	2 A An	alysis Da	ate: 5/22/	2019 11:25	:39 AM	Prep Date:	5/21/20	019
Analyte				Result	RL	SPK val	Je Ro	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury				0.00194	0.00100	0.0020)	0	97.0	80	120	0.770	15
Sample ID	1905168	-01B SD	Batch ID	: 91017		Te	stNo:	SW7	470A		Units:	mg/L	
SampType:	SD		Run ID:	CETAC2	_HG_19052	2A An	alysis Da	ate: 5/22/ 2	2019 11:27	:56 AM	Prep Date:	5/21/20)19
Analyte				Result	RL	SPK val	Je Ro	ef Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury				<0.00200	0.00500	0		0				0	10
Sample ID	1905168	-01B PDS	Batch ID	: 91017		Te	stNo:	SW7	470A		Units:	mg/L	
SampType:	PDS		Run ID:	CETAC2	_HG_19052	2A An	alysis Da	ate: 5/22/	2019 11:30	:13 AM	Prep Date:	5/21/20	019
Analyte				Result	RL	SPK val	Je R	ef Val	%REC	LowLimi	t HighLimit %		PDLimit Qual
Mercury				0.0122	0.00100	0.0125		0	97.6	85	115		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: Work Ord	Golder	58			AN	ALYT	ICAL (QC SI	UMMA	RY RE	PORT
Project:	Lumina	ant-MLSES A	sh Ponds				RunII):	CETAC2	_HG_190	522A
Sample ID	ICV-190522	Batch ID:	R104223	3	TestNo	: sw	7470A		Units:	mg/L	
SampType:	ICV	Run ID:	CETAC2	2_HG_19052	2A Analysi	s Date: 5/22	2/2019 9:57:	56 AM	Prep Date		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Mercury		(0.00383	0.000200	0.00400	0	95.8	90	110		
Sample ID	CCV1-190522	Batch ID:	R104223	3	TestNo	: SW	7470A		Units:	mg/L	
SampType:	CCV	Run ID:	CETAC2	2_HG_19052	2A Analysi	s Date: 5/22	2/2019 10:41	:04 AM	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Mercury		().00202	0.000200	0.00200	0	101	90	110		
Sample ID	CCV2-190522	Batch ID:	R104223	3	TestNo	: SW	7470A		Units:	mg/L	
SampType:	CCV	Run ID:	CETAC2	2_HG_19052	2A Analysi	s Date: 5/22	2/2019 11:08	8:23 AM	Prep Date		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Mercury		(0.00203	0.000200	0.00200	0	102	90	110		
Sample ID	CCV3-190522	Batch ID:	R104223	3	TestNo	: SW	7470A		Units:	mg/L	
SampType:	CCV	Run ID:	CETAC2	2_HG_19052	2A Analysi	s Date: 5/22	2/2019 2:51:	11 PM	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Mercurv			0.00203	0.000200	0.00200	0	102	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

Page 2 of 25
Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_190520B

RunID:

Project: Luminant-MLSES Ash Ponds

The QC data in batch 90959 applies to the following samples: 1905168-01B, 1905168-02B, 1905168-03B, 1905168-04B, 1905168-05B, 1905168-06B, 1905168-07B

Sample ID MB-90959	Batch ID:	90959		TestNo): SW (6020A		Units:	mg/L
SampType: MBLK	Run ID:	ICP-MS4	4_190520B	Analys	is Date: 5/20	/2019 3:23:	00 PM	Prep Date:	5/17/2019
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Antimony	<0	.0008000	0.00250						
Arsenic	<(0.00200	0.00500						
Barium	<(0.00300	0.0100						
Beryllium	<0	.000300	0.00100						
Cadmium	<0	.000300	0.00100						
Calcium	<	<0.100	0.300						
Chromium	<(0.00200	0.00500						
Cobalt	<(0.00300	0.00500						
Iron	<	0.0300	0.100						
Lead	<0	.000300	0.00100						
Lithium	<(0.00500	0.0100						
Magnesium	~	<0.100	0.300						
Potassium	•	<0.100	0.300						
Selenium	<(0.00200	0.00500						
Sodium	•	<0.100	0.300						
Thallium	<0	.000500	0.00150						
Sample ID LCS-90959	Batch ID:	90959		TestNo	: SW	6020A		Units:	mg/L
SampType: LCS	Run ID:	ICP-MS4	4_190520B	Analys	is Date: 5/20	/2019 3:27:	00 PM	Prep Date:	5/17/2019
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Antimony		0.190	0.00250	0.200	0	94.8	80	120	
Arsenic		0.204	0.00500	0.200	0	102	80	120	
Barium		0.190	0.0100	0.200	0	94.9	80	120	
Beryllium		0.211	0.00100	0.200	0	105	80	120	
Cadmium		0.192	0.00100	0.200	0	95.8	80	120	
Calcium		4.65	0.300	5.00	0	93.1	80	120	
Chromium		0.195	0.00500	0.200	0	97.7	80	120	
Cobalt		0.203	0.00500	0.200	0	101	80	120	
Iron		5.14	0.100	5.00	0	103	80	120	
Lead		0.187	0.00100	0.200	0	93.6	80	120	
Lithium		0.217	0.0100	0.200	0	108	80	120	
Magnesium		5.03	0.300	5.00	0	101	80	120	
Potassium		5.02	0.300	5.00	0	100	80	120	
Selenium		0.204	0.00500	0.200	0	102	80	120	
Sodium		5.07	0.300	5.00	0	101	80	120	
Thallium		0.199	0.00150	0.200	0	99.7	80	120	

Qualifiers: Analyte detected in the associated Method Blank DF Dilution Factor В J Analyte detected between MDL and RL MDL Method Detection Limit Page 3 of 25 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits Analyte detected between SDL and RL Ν Parameter not NELAP certified J

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

Project:	Lumina	nt-MLSES A	Ash Ponds	8			RunII): I	CP-MS4_	_19052	20B
Sample ID	LCSD-90959	Batch ID:	90959		TestN	o: SW	6020A		Units:	mg/l	
SampType:	LCSD	Run ID:	ICP-MS	64_190520B	Analy	sis Date: 5/20	/2019 3:29:	00 PM	Prep Date:	5/17	/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qua
Antimony			0.195	0.00250	0.200	0	97.7	80	120	2.98	15
Arsenic			0.201	0.00500	0.200	0	100	80	120	1.34	15
Barium			0.194	0.0100	0.200	0	97.2	80	120	2.37	15
Beryllium			0.210	0.00100	0.200	0	105	80	120	0.345	15
Cadmium			0.198	0.00100	0.200	0	98.8	80	120	3.14	15
Calcium			4.68	0.300	5.00	0	93.5	80	120	0.492	15
Chromium			0.198	0.00500	0.200	0	99.1	80	120	1.40	15
Cobalt			0.200	0.00500	0.200	0	100	80	120	1.46	15
Iron			5.15	0.100	5.00	0	103	80	120	0.209	15
Lead			0.190	0.00100	0.200	0	95.0	80	120	1.54	15
Lithium			0.211	0.0100	0.200	0	106	80	120	2.37	15
Magnesium			5.15	0.300	5.00	0	103	80	120	2.30	15
Potassium			5.07	0.300	5.00	0	101	80	120	1.08	15
Selenium			0.200	0.00500	0.200	0	99.9	80	120	1.96	15
Sodium			5.10	0.300	5.00	0	102	80	120	0.502	15
Thallium			0.200	0.00150	0.200	0	100	80	120	0.279	15
Sample ID	1905178-02C SD	Batch ID:	90959		TestN	o: SW	6020A		Units:	mg/l	L
SampType:	SD	Run ID:	ICP-MS	64_190520B	Analy	sis Date: 5/20	/2019 3:37:	00 PM	Prep Date:	5/17	/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Antimony		<	<0.00400	0.0125	0	0				0	10
Arsenic			0.0115	0.0250	0	0.0113				1.19	10
Barium			0.0249	0.0500	0	0.0269				7.62	10
Beryllium		<	<0.00150	0.00500	0	0				0	10
Cadmium		<	<0.00150	0.00500	0	0				0	10
Chromium			0.0104	0.0250	0	0.0104				0.596	10
Cobalt			<0.0150	0.0250	0	0				0	10
Iron			0.313	0.500	0	0.303				3.55	10
Lead		<	<0.00150	0.00500	0	0				0	10
Lithium			0.0378	0.0500	0	0.0361				4.57	10
Potassium			1.53	1.50	0	1.52				0.244	10
Selenium			<0.0100	0.0250	0	0				0	10
Thallium		<	<0.00250	0.00750	0	0				0	10
Sample ID	1905178-02C PD	Batch ID:	90959		TestN	o: SW	6020A		Units:	mg/i	L
SampType:	PDS	Run ID:	ICP-MS	64_190520B	Analy	sis Date: 5/20	/2019 3:56:	00 PM	Prep Date:	5/17	/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Antimony			0.193	0.00250	0.200	0	96.4	80	120		
Arsenic			0.209	0.00500	0.200	0.0113	98.9	80	120		
Oualifiers:	B Analyte	detected in the :	associated N	Method Blank	DF	Dilution Facto	or				
· · · · · · · · · · · · · · · · · · ·	J Analvte	detected betwee	n MDL and	I RL	MDL	Method Detec	tion Limit				Page 4 of 25
	ND Not Dete	ected at the Met	hod Detecti	on Limit	R	RPD outside a	accepted cont	rol limits		1	1 460 1 01 25

RL Reporting Limit

J Analyte detected between SDL and RL S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Work Order:

Golder 1905168

ANALYTICAL QC SUMMARY REPORT

Project:	Luminant-	MLSES A	Ash Ponds	6			RunII	D: 1	CP-MS4_	190520	B
Sample ID	1905178-02C PDS	Batch ID:	90959		TestNo	: SW	6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS	4_190520B	Analys	is Date: 5/20)/2019 3:56:	00 PM	Prep Date:	5/17/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Barium			0.214	0.0100	0.200	0.0269	93.7	80	120		
Beryllium			0.184	0.00100	0.200	0	91.9	80	120		
Cadmium			0.184	0.00100	0.200	0	91.8	80	120		
Chromium			0.198	0.00500	0.200	0.0104	93.6	80	120		
Cobalt			0.193	0.00500	0.200	0	96.5	80	120		
Iron			5.19	0.100	5.00	0.303	97.7	80	120		
Lead			0.185	0.00100	0.200	0	92.4	80	120		
Lithium			0.224	0.0100	0.200	0.0361	93.9	80	120		
Potassium			6.27	0.300	5.00	1.52	94.9	80	120		
Selenium			0.195	0.00500	0.200	0	97.6	80	120		
Thallium			0.203	0.00150	0.200	0	101	80	120		
Sample ID	1905178-02C MS	Batch ID:	90959		TestNo	: SW	6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS	4_190520B	Analys	is Date: 5/20)/2019 3:58:	00 PM	Prep Date:	5/17/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Antimony			0.197	0.00250	0.200	0	98.3	80	120		
Arsenic			0.217	0.00500	0.200	0.0113	103	80	120		
Barium			0.223	0.0100	0.200	0.0269	97.8	80	120		
Beryllium			0.187	0.00100	0.200	0	93.6	80	120		
Cadmium			0.185	0.00100	0.200	0	92.5	80	120		
Calcium			65.6	0.300	5.00	62.5	62.2	80	120		S
Chromium			0.198	0.00500	0.200	0.0104	93.7	80	120		
Cobalt			0.196	0.00500	0.200	0	98.1	80	120		
Iron			5.25	0.100	5.00	0.303	98.9	80	120		
Lead			0.188	0.00100	0.200	0	93.9	80	120		
Lithium			0.221	0.0100	0.200	0.0361	92.5	80	120		
Magnesium			65.8	0.300	5.00	63.5	45.8	80	120		S
Potassium			6.56	0.300	5.00	1.52	101	80	120		
Selenium			0.204	0.00500	0.200	0	102	80	120		
Sodium			223	0.300	5.00	229	-120	80	120		S
Thallium			0.201	0.00150	0.200	0	100	80	120		
Sample ID	1905178-02C MSD	Batch ID:	90959		TestNo	: SW	6020A		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS	4_190520B	Analys	is Date: 5/20)/2019 4:00:	00 PM	Prep Date:	5/17/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Antimony			0.199	0.00250	0.200	0	99.4	80	120	1.06	15
Arsenic			0.214	0.00500	0.200	0.0113	101	80	120	1.22	15
Barium			0.228	0.0100	0.200	0.0269	100	80	120	2.27	15
Beryllium			0.186	0.00100	0.200	0	92.8	80	120	0.831	15
Oualifiers:	B Analyte dete	ected in the a	associated N	Iethod Blank	DF	Dilution Facto	or				

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 5 of 25

ANALYTICAL QC SUMMARY REPORT

1905168 **Project:** Luminant-MLSES Ash Ponds

Golder

CLIENT:

Work Order:

RunID:	IC
--------	----

CP-MS4_190520B

Sample ID 1905178-02C MSD	Batch ID:	90959		TestNo	: SI	W6020A		Units:	mg/L	-	
SampType: MSD	Run ID:	ICP-MS4	_190520B	Analysi	is Date: 5/	20/2019 4:00:0	00 PM	Prep Date	: 5/17/	/2019	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimi	t Qual
Cadmium		0.188	0.00100	0.200	0	94.1	80	120	1.65	15	
Calcium		65.6	0.300	5.00	62.5	61.4	80	120	0.058	15	S
Chromium		0.197	0.00500	0.200	0.0104	93.2	80	120	0.455	15	
Cobalt		0.195	0.00500	0.200	0	97.6	80	120	0.571	15	
Iron		5.20	0.100	5.00	0.303	97.9	80	120	0.922	15	
Lead		0.186	0.00100	0.200	0	93.1	80	120	0.842	15	
Lithium		0.227	0.0100	0.200	0.0361	95.5	80	120	2.65	15	
Magnesium		66.6	0.300	5.00	63.5	62.8	80	120	1.28	15	S
Potassium		6.53	0.300	5.00	1.52	100	80	120	0.365	15	
Selenium		0.201	0.00500	0.200	0	101	80	120	1.07	15	
Sodium		224	0.300	5.00	229	-105	80	120	0.347	15	S
Thallium		0.205	0.00150	0.200	0	103	80	120	2.13	15	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 6 of 25

- S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

RunID:

Project:	Luminant-MLSES A	Ash Ponds				RunII): I	CP-MS4_	_190520B	
Sample ID ICV-1905	Batch ID:	R104182		TestNo:	SW6	6020A		Units:	mg/L	
SampType: ICV	Run ID:	ICP-MS4	_190520B	Analysis	Date: 5/20	/2019 11:23	:00 AM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLi	mit Qual
Antimony		0.0968	0.00250	0.100	0	96.8	90	110		
Arsenic		0.0991	0.00500	0.100	0	99.1	90	110		
Barium		0.0948	0.0100	0.100	0	94.8	90	110		
Beryllium		0.102	0.00100	0.100	0	102	90	110		
Cadmium		0.0974	0.00100	0.100	0	97.4	90	110		
Calcium		2.44	0.300	2.50	0	97.7	90	110		
Chromium		0.102	0.00500	0.100	0	102	90	110		
Cobalt		0.101	0.00500	0.100	0	101	90	110		
Iron		2.61	0.100	2.50	0	104	90	110		
Lead		0.0932	0.00100	0.100	0	93.2	90	110		
Lithium		0.106	0.0100	0.100	0	106	90	110		
Magnesium		2.50	0.300	2.50	0	100	90	110		
Potassium		2.53	0.300	2.50	0	101	90	110		
Selenium		0.0979	0.00500	0.100	0	97.9	90	110		
Sodium		2.59	0.300	2.50	0	104	90	110		
Thallium		0.0911	0.00150	0.100	0	91.1	90	110		
Sample ID LCVL-19	0520 Batch ID:	R104182		TestNo:	SW6	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS4	_190520B	Analysis	Date: 5/20	/2019 11:29	:00 AM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLi	mit Qual
Antimony		0.00176	0.00250	0.00200	0	87.9	70	130		
Arsenic		0.00489	0.00500	0.00500	0	97.7	70	130		
Barium		0.00432	0.0100	0.00500	0	86.5	70	130		
Beryllium	(0.000893	0.00100	0.00100	0	89.3	70	130		
Cadmium	(0.000871	0.00100	0.00100	0	87.1	70	130		
Calcium		0.0919	0.300	0.100	0	91.9	70	130		
Chromium		0.00481	0.00500	0.00500	0	96.1	70	130		
Cobalt		0.00485	0.00500	0.00500	0	97.0	70	130		
Iron		0.107	0.100	0.100	0	107	70	130		
Lead	(0.000831	0.00100	0.00100	0	83.1	70	130		
Lithium		0.0104	0.0100	0.0100	0	104	70	130		
Magnesium		0.0970	0.300	0.100	0	97.0	70	130		
Potassium		0.0964	0.300	0.100	0	96.4	70	130		
Selenium		0.00489	0.00500	0.00500	0	97.8	70	130		
Sodium		0.0958	0.300	0.100	0	95.8	70	130		
Thallium	(0.000816	0.00150	0.00100	0	81.6	70	130		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 7 of 25
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS4_190520B

Project: Luminant-MLSES Ash Ponds

Sample ID	CCV5-190520	Batch ID:	R104182	2	TestNo	: SW6	6020A		Units:	mg/	L
SampType:	CCV	Run ID:	ICP-MS	4_190520B	Analysi	s Date: 5/20	/2019 2:53:	00 PM	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Antimony			0.195	0.00250	0.200	0	97.6	90	110		
Arsenic			0.203	0.00500	0.200	0	102	90	110		
Barium			0.193	0.0100	0.200	0	96.5	90	110		
Beryllium			0.202	0.00100	0.200	0	101	90	110		
Cadmium			0.197	0.00100	0.200	0	98.4	90	110		
Calcium			4.64	0.300	5.00	0	92.9	90	110		
Chromium			0.195	0.00500	0.200	0	97.5	90	110		
Cobalt			0.201	0.00500	0.200	0	100	90	110		
Iron			5.06	0.100	5.00	0	101	90	110		
Lead			0.192	0.00100	0.200	0	96.1	90	110		
Lithium			0.206	0.0100	0.200	0	103	90	110		
Magnesium			5.06	0.300	5.00	0	101	90	110		
Potassium			5.03	0.300	5.00	0	101	90	110		
Selenium			0.205	0.00500	0.200	0	102	90	110		
Sodium			5.17	0.300	5.00	0	103	90	110		
Thallium			0.199	0.00150	0.200	0	99.7	90	110		
Sample ID	LCVL5-190520	Batch ID:	R104182	2	TestNo	: SW6	6020A		Units:	mg/	L
Sample ID SampType:	LCVL5-190520 LCVL	Batch ID: Run ID:	R104182 ICP-MS4	2 4_190520B	TestNo Analysi	: SW6 s Date: 5/20	6020A /2019 3:01:	00 PM	Units: Prep Date	mg/	L
Sample ID SampType: Analyte	LCVL5-190520 LCVL	Batch ID: Run ID:	R104182	2 4_190520B RL	TestNo Analysi SPK value	: SW6 s Date: 5/20 Ref Val	6020A /2019 3:01: %REC	00 PM LowLimi	Units: Prep Date t HighLimit	mg/ e: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony	LCVL5-190520 LCVL	Batch ID: Run ID:	R104182 ICP-MS4 Result 0.00174	2 4_190520B RL 0.00250	TestNo Analysi SPK value 0.00200	: SW6 s Date: 5/20 Ref Val	6020A /2019 3:01: %REC 87.2	00 PM LowLimi 70	Units: Prep Date t HighLimit 130	mg/ e: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic	LCVL5-190520 LCVL	Batch ID: Run ID:	R104182 ICP-MS4 Result 0.00174 0.00487	2 4_190520B RL 0.00250 0.00500	TestNo Analysi SPK value 0.00200 0.00500	: SW6 s Date: 5/20 Ref Val 0 0	6020A /2019 3:01: %REC 87.2 97.5	00 PM LowLimi 70 70	Units: Prep Date t HighLimit 130 130	mg/ e: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium	LCVL5-190520 LCVL	Batch ID: Run ID: (((R104182 ICP-MS4 Result 0.00174 0.00487 0.00423	2 4_190520B RL 0.00250 0.00500 0.0100	TestNo Analysi SPK value 0.00200 0.00500 0.00500	: SW6 s Date: 5/20 Ref Val 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6	00 PM LowLimi 70 70 70 70	Units: Prep Date t HighLimit 130 130 130	mg/ s: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100	: SW6 s Date: 5/20 Ref Val 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110	00 PM LowLimi 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130	mg/ e: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((()) () () () () () (R104182 ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1	00 PM LowLimi 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((0	R104182 ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.00952	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2	00 PM LowLimi 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((0)) () () () () () ()	R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.00952 0.00485	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00952 0.00485 0.00489	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.300 0.00500 0.00500	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt Iron	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00922 0.00485 0.00485 0.00489 0.108	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500 0.100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.00500 0.100	: SW s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MSA Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00922 0.00485 0.00489 0.108 0.000805	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.00500 0.100 0.00500 0.100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Barium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00922 0.00485 0.00485 0.00489 0.108 0.000805 0.0108	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.100 0.00500 0.100 0.00100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 95.2 97.1 97.9 108 80.5 108	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((0))) (((((((((R104182 ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00921 0.00922 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485 0.00485	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.0100 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.0100 0.0100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 95.2 97.1 97.9 108 80.5 108 98.3	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ 9: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((())))) ((((((R104182 ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00921 0.00922 0.00485 0.00489 0.108 0.000805 0.0108 0.0083 0.0975	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.00100 0.0100 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.00500 0.00500 0.00500 0.00100 0.00100 0.0100 0.100	: SW6 s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 95.2 97.1 95.2 97.1 95.2 97.1 95.2 97.1 95.2 97.5 108 80.5 108 98.3 97.5	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ 9: %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium Selenium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((()))) (((((R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00922 0.00485 0.00485 0.00485 0.00489 0.108 0.00805 0.0108 0.00983 0.0983 0.0975 0.00517	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100 0.300 0.300 0.300 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.0100 0.100 0.100 0.100 0.100	: SW s Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108 98.3 97.5 103	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ %RPD	L RPDLimit Qual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium	LCVL5-190520 LCVL	Batch ID: Run ID: (((((((((((((((((((R104182 ICP-MS Result 0.00174 0.00487 0.00423 0.00110 0.00921 0.00922 0.00485 0.00485 0.00485 0.00485 0.00485 0.00805 0.0108 0.00983 0.0975 0.00517 0.102	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100 0.00100 0.300 0.300 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.0100 0.100 0.100 0.100 0.100 0.100	: SW S Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A /2019 3:01: %REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108 98.3 97.5 103 102	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date t HighLimit 130 130 130 130 130 130 130 130 130 130	mg/ :: %RPD	L RPDLimit Qual

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 8 of 25 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS4_190520B

Project: Luminant-MLSES Ash Ponds

Sample ID	CCV6-190520	Batch ID:	R10418	2	TestNo	: SWe	6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	4_190520B	Analysi	is Date: 5/20	/2019 4:02:	00 PM	Prep Date	9:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Q	ual
Antimony			0.194	0.00250	0.200	0	96.9	90	110		
Arsenic			0.205	0.00500	0.200	0	102	90	110		
Barium			0.192	0.0100	0.200	0	96.2	90	110		
Beryllium			0.199	0.00100	0.200	0	99.7	90	110		
Cadmium			0.193	0.00100	0.200	0	96.3	90	110		
Calcium			4.67	0.300	5.00	0	93.4	90	110		
Chromium			0.194	0.00500	0.200	0	96.8	90	110		
Cobalt			0.203	0.00500	0.200	0	101	90	110		
Iron			5.07	0.100	5.00	0	101	90	110		
Lead			0.195	0.00100	0.200	0	97.6	90	110		
Lithium			0.204	0.0100	0.200	0	102	90	110		
Magnesium			5.01	0.300	5.00	0	100	90	110		
Potassium			4.98	0.300	5.00	0	99.6	90	110		
Selenium			0.205	0.00500	0.200	0	103	90	110		
Sodium			5.14	0.300	5.00	0	103	90	110		
Thallium			0.205	0.00150	0.200	0	102	90	110		
Sample ID	LCVL6-190520	Batch ID:	R10418	2	TestNo	: SW(6020A		Units:	mg/L	
Sample ID SampType:	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS	2 4_190520B	TestNo Analysi	: SW0 is Date: 5/20	6020A //2019 4:06:	00 PM	Units: Prep Date	mg/L	
Sample ID SampType: Analyte	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result	2 4_190520B RL	TestNo Analysi SPK value	: SW (is Date: 5/20 Ref Val	6020A /2019 4:06: %REC	00 PM LowLimi	Units: Prep Date it HighLimit	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result 0.00178	2 4_190520B RL 0.00250	TestNo Analysi SPK value 0.00200	: SW (is Date: 5/20 Ref Val	6020A /2019 4:06: %REC 89.2	00 PM LowLimi 70	Units: Prep Date it HighLimit 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result 0.00178 0.00492	2 4_190520B RL 0.00250 0.00500	TestNo Analysi SPK value 0.00200 0.00500	: SW (is Date: 5/20 Ref Val 0 0	6020A //2019 4:06: %REC 89.2 98.4	LowLimi	Units: Prep Date it HighLimit 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium	LCVL6-190520 LCVL	Batch ID: Run ID: C	R10418 ICP-MS Result 0.00178 0.00492 0.00435	2 4_190520B RL 0.00250 0.00500 0.0100	TestNo Analysi SPK value 0.00200 0.00500 0.00500	: SW is Date: 5/20 Ref Val 0 0 0	6020A //2019 4:06: %REC 89.2 98.4 87.0	00 PM LowLimi 70 70 70 70	Units: Prep Date it HighLimit 130 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00105	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100	: SW is Date: 5/20 Ref Val 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105	00 PM LowLimi 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00105 .000933	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100	: SW is Date: 5/20 Ref Val 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3	00 PM LowLimi 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Barium Cadmium Cadmium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100	: SW is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0	6020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8	00 PM LowLimi 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130	mg/L 9: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Calcium Chromium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00105 0.00933 0.0988 0.00475	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.300 0.00500	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	:: SW is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8 95.0	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00933 0.0988 0.00475 0.00485	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	: SW0 is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Barium Cadmium Cadmium Calcium Chromium Cobalt Iron	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00933 0.0988 0.00475 0.00485 0.00485 0.107	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500 0.100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.00500 0.100	: SW is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: //2019 4:	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result).00178).00492).00435).00105 .000933 0.0988).00475).00485 0.107 .000828	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100	: SW is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00105 0.00933 0.0988 0.00475 0.00485 0.107 0.00828 0.0104	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.00500 0.100 0.00500 0.100 0.00100	: SW6 is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	LCVL6-190520 LCVL	Batch ID: Run ID: C C C C C C C C C C C C C C C C C C C	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00933 0.0988 0.00475 0.00485 0.107 0.00828 0.0104 0.0986	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.00100 0.0100 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.00500 0.100 0.00500 0.00100 0.00100 0.0100 0.100	: SW is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: %REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L e: %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Baryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00933 0.0988 0.00475 0.00485 0.00475 0.00485 0.107 0.00828 0.0104 0.0986 0.0940	2 4_190520B RL 0.00250 0.00500 0.00100 0.00100 0.00500 0.00500 0.00500 0.00500 0.100 0.00100 0.00100 0.0100 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.0100 0.100 0.100	:: SW0 is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: //2019 4:06: 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6 94.0	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium Selenium	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result 0.00178 0.00492 0.00435 0.00435 0.00933 0.0988 0.00475 0.00485 0.107 0.00828 0.0104 0.0986 0.0940 0.00483	2 4_190520B RL 0.00250 0.00500 0.00100 0.00100 0.00100 0.00500 0.00500 0.00100 0.00100 0.00100 0.00100 0.00100 0.300 0.300 0.300 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.100 0.00500 0.100 0.0100 0.0100 0.100 0.100 0.100 0.100	: SW0 is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: //2019 4:06: 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6 94.0 96.6	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual
Sample ID SampType: Analyte Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium Selenium Sodium	LCVL6-190520 LCVL	Batch ID: Run ID:	R10418 ICP-MS Result).00178).00492).00435).00435).00105 .000933 0.0988).00475).00485 0.107 .000828 0.0104 0.0986 0.0940).00483 0.0943 0.131	2 4_190520B RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100 0.00100 0.300 0.300 0.300 0.300	TestNo Analysi SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.0100 0.100 0.100 0.100 0.100 0.100	: SW0 is Date: 5/20 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5020A //2019 4:06: //2019 4:06: //2019 4:06: 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6 94.0 96.6 131	00 PM LowLimi 70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 130	mg/L %RPD RPDLimit Q	ual

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 9 of 25 J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

CLIENT: (Golder				ΔΝ	ΔΙ.ΥΤ	TCAL C	C ST	IMMAE		FPORT
Work Order:	1905168									111	
Project: I	Luminant-N	ALSES A	Ash Ponds				RunID): I	CP-MS5_	19052	1A
The QC data in batch 06B, 1905168-07B	90959 applie	es to the f	ollowing sam	nples: 1905 ⁻	168-01B, 19051	68-02B, 1	905168-03B,	1905168-	04B, 190516	8-05B,	1905168-
Sample ID MB-9095	9	Batch ID:	90959		TestNo:	SM	/6020A		Units:	mg/L	
SampType: MBLK		Run ID:	ICP-MS5_	_190521A	Analysis	Date: 5/2	1/2019 12:36	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD I	RPDLimit Qual
Boron			<0.0100	0.0300							
Molybdenum		<	<0.00200	0.00500							
Sample ID LCS-909	59	Batch ID:	90959		TestNo:	SM	/6020A		Units:	mg/L	
SampType: LCS		Run ID:	ICP-MS5_	_190521A	Analysis	Date: 5/2	1/2019 12:38	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD I	RPDLimit Qual
Boron			0.201	0.0300	0.200	0	101	80	120		
Molybdenum			0.195	0.00500	0.200	0	97.3	80	120		
Sample ID LCSD-90	959	Batch ID:	90959		TestNo:	SM	/6020A		Units:	mg/L	1
SampType: LCSD		Run ID:	ICP-MS5_	_190521A	Analysis	Date: 5/2	1/2019 12:41	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD I	RPDLimit Qual
Boron			0.208	0.0300	0.200	0	104	80	120	3.23	15
Molybdenum			0.192	0.00500	0.200	0	96.2	80	120	1.18	15
Sample ID 1905178-	02C SD	Batch ID:	90959		TestNo:	SM	/6020A		Units:	mg/L	
SampType: SD		Run ID:	ICP-MS5_	_190521A	Analysis	Date: 5/2	1/2019 12:47	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD I	RPDLimit Qual
Boron			<1.00	3.00	0	0.525				0	10
Calcium			70.4	30.0	0	68.2				3.15	10
Magnesium			63.5	30.0	0	63.5				0.085	10
Molybdenum			<0.200	0.500	0	0				0	10
Sodium			227	30.0	0	233				2.75	10
Sample ID 1905178-	02C PDS	Batch ID:	90959		TestNo:	SM	/6020A		Units:	mg/L	
SampType: PDS		Run ID:	ICP-MS5_	_190521A	Analysis	Date: 5/2	1/2019 1:14:0	00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD I	RPDLimit Qual
Boron			4.53	0.600	4.00	0.525	100	80	120		
Calcium			170	6.00	100	68.2	102	80	120		
Magnesium			161	6.00	100	63.5	97.1	80	120		
Molybdenum			3.64	0.100	4.00	0	90.9	80	120		
Sodium			331	6.00	100	233	98.2	80	120		

Golder

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 10 of 25
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT:	Golder				ΔN		FICAL C	C SU	IMMA	RVE	REPOR	T
Work Order:	1905168				1 1 1							
Project:	Luminant-	MLSES A	sh Ponds				RunID): I(CP-MS5	_19052	21A	
Sample ID 1905	178-02C MS	Batch ID:	90959		TestNo:	SV	V6020A		Units:	mg/l	_	
SampType: MS		Run ID:	ICP-MS5	_190521A	Analysis	s Date: 5/2	21/2019 1:17:0	00 PM	Prep Date	: 5/17	/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit G	Jual
Boron			0.866	0.600	0.200	0.525	170	80	120			s
Molybdenum			0.192	0.100	0.200	0	96.0	80	120			
Sample ID 1905	178-02C MSD	Batch ID:	90959		TestNo:	SV	V6020A		Units:	mg/l	_	
SampType: MSD		Run ID:	ICP-MS5	_190521A	Analysis	s Date: 5/2	21/2019 1:19:0	00 PM	Prep Date	: 5/17	/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit G	Jual
Boron			0.750	0.600	0.200	0.525	112	80	120	14.3	15	
Molybdenum			0.189	0.100	0.200	0	94.3	80	120	1.76	15	

Page 11 of 25

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

Project:	Lumina	nt-MLSES A	sh Ponds				RunID): I	CP-MS5	_19052	21A
Sample ID	ICV-190521	Batch ID:	R104204		TestNo	sw	6020A		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS5	_190521A	Analysi	s Date: 5/2 ′	1/2019 12:10	:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Boron			0.103	0.0300	0.100	0	103	90	110		
Calcium			2.52	0.300	2.50	0	101	90	110		
Iron			2.60	0.100	2.50	0	104	90	110		
Magnesium			2.49	0.300	2.50	0	99.7	90	110		
Molybdenun	n		0.0930	0.00500	0.100	0	93.0	90	110		
Sodium			2.56	0.300	2.50	0	103	90	110		
Sample ID	LCVL-190521	Batch ID:	R104204		TestNo	SW	6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS5	5_190521A	Analysi	s Date: 5/2 ′	1/2019 12:15	:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Boron			0.0223	0.0300	0.0200	0	111	70	130		
Calcium			0.104	0.300	0.100	0	104	70	130		
Iron			0.0979	0.100	0.100	0	97.9	70	130		
Magnesium			0.0983	0.300	0.100	0	98.3	70	130		
Molybdenun	n	(0.00464	0.00500	0.00500	0	92.8	70	130		
Sodium			0.0960	0.300	0.100	0	96.0	70	130		
Sample ID	CCV1-190521	Batch ID:	R104204		TestNo	SW	6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS5	5_190521A	Analysi	s Date: 5/2 ′	1/2019 1:26:0	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Boron			0.196	0.0300	0.200	0	98.1	90	110		
Calcium			4.90	0.300	5.00	0	98.0	90	110		
Iron			5.04	0.100	5.00	0	101	90	110		
Magnesium			4.94	0.300	5.00	0	98.8	90	110		
Molybdenun	n		0.193	0.00500	0.200	0	96.3	90	110		
Sodium			4.93	0.300	5.00	0	98.6	90	110		
Sample ID	LCVL1-190521	Batch ID:	R104204		TestNo	SW	6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS5	5_190521A	Analysis	s Date: 5/2 ′	1/2019 1:30:0	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Boron			0.0245	0.0300	0.0200	0	123	70	130		
Calcium			0.0976	0.300	0.100	0	97.6	70	130		
Iron			0.0980	0.100	0.100	0	98.0	70	130		
Magnesium			0.0940	0.300	0.100	0	94.0	70	130		
Molybdenun	n	(0.00478	0.00500	0.00500	0	95.6	70	130		
Sodium			0.0986	0.300	0.100	0	98.6	70	130		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 12 of 25
	ND Not Detected at the Method Detection Limit		R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	

J Analyte detected between SDL and RL

N Parameter not NELAP certified

CLIENT:	Golder				AN	NALYT	ICAL (QC SI	JMMAI	RY REPORT
Project:	Luminant	-MLSES A	Ash Ponds				RunII): 1	CP-MS5_	_190521A
Sample ID CCV2	-190521	Batch ID:	R104204	ŀ	TestNo	: SW	6020A		Units:	mg/L
SampType: CCV		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 2:05:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron			0.208	0.0300	0.200	0	104	90	110	
Molybdenum			0.201	0.00500	0.200	0	101	90	110	
Sample ID LCVL	2-190521	Batch ID:	R104204	L .	TestNo): SW	6020A		Units:	mg/L
SampType: LCVL		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 2:09:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron			0.0258	0.0300	0.0200	0	129	70	130	
Molybdenum			0.00474	0.00500	0.00500	0	94.7	70	130	
Sample ID CCV3	-190521	Batch ID:	R104204	Ļ	TestNo): SW	6020A		Units:	mg/L
SampType: CCV		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 2:34:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron			0.199	0.0300	0.200	0	99.5	90	110	
Molybdenum			0.199	0.00500	0.200	0	99.7	90	110	
Sample ID LCVL	3-190521	Batch ID:	R104204	Ļ	TestNo): SW	6020A		Units:	mg/L
SampType: LCVL		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 2:46:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron			0.0227	0.0300	0.0200	0	113	70	130	
Molybdenum			0.00484	0.00500	0.00500	0	96.8	70	130	
Sample ID CCV4	-190521	Batch ID:	R104204	Ļ	TestNo): SW	6020A		Units:	mg/L
SampType: CCV		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 3:00:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Molybdenum			0.199	0.00500	0.200	0	99.7	90	110	
Sample ID LCVL	4-190521	Batch ID:	R104204	Ļ	TestNo): SW	6020A		Units:	mg/L
SampType: LCVL		Run ID:	ICP-MS	5_190521A	Analys	is Date: 5/2 ′	1/2019 3:05:	00 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Molvbdenum			0.00483	0.00500	0.00500	0	96.6	70	130	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R

RL Reporting Limit

CLIENT:

Golder

J Analyte detected between SDL and RL RPD outside accepted control limits

Page 13 of 25

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds **RunID:** IC2_190515A

The QC data in batch 90908 applies to the following samples: 1905168-01C, 1905168-02C, 1905168-03C, 1905168-04C, 1905168-05C, 1905168-06C, 1905168-07C

Sample ID	MB-90908	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_19	0515A	Analysi	is Date: 5/1	5/2019 10:10	:50 AM	Prep Date:	5/15/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	%RPD F	RPDLimit Qual
Chloride			<0.300	1.00							
Fluoride			<0.100	0.400							
Nitrate-N			<0.100	0.500							
Sulfate			<1.00	3.00							
Sample ID	LCS-90908	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L	
SampType:	LCS	Run ID:	IC2_19	0515A	Analysi	s Date: 5/1	5/2019 10:26	:50 AM	Prep Date:	5/15/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD F	RPDLimit Qual
Chloride			10.1	1.00	10.00	0	101	90	110		
Fluoride			4.00	0.400	4.000	0	99.9	90	110		
Nitrate-N			5.09	0.500	5.000	0	102	90	110		
Sulfate			30.4	3.00	30.00	0	101	90	110		
Sample ID	LCSD-90908	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_19	0515A	Analysi	is Date: 5/1	5/2019 10:42	:50 AM	Prep Date:	5/15/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🦻	%RPD F	RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	0.674	20
Fluoride			4.05	0.400	4.000	0	101	90	110	1.26	20
Nitrate-N			5.08	0.500	5.000	0	102	90	110	0.146	20
Sulfate			30.9	3.00	30.00	0	103	90	110	1.55	20
Sample ID	1905167-01CMS	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L	
SampType:	MS	Run ID:	IC2_19	0515A	Analysi	s Date: 5/1	5/2019 1:07::	36 PM	Prep Date:	5/15/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	%RPD F	RPDLimit Qual
Chloride			222	10.0	200.0	12.69	105	90	110		
Fluoride			211	4.00	200.0	0	106	90	110		
Nitrate-N			45.6	5.00	45.16	0	101	90	110		
Sulfate			239	30.0	200.0	41.32	98.7	90	110		
Sample ID	1905167-01CMSD	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L	
SampType:	MSD	Run ID:	IC2_19	0515A	Analysi	s Date: 5/1	5/2019 1:23::	36 PM	Prep Date:	5/15/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	%RPD F	RPDLimit Qual
Chloride			221	10.0	200.0	12.69	104	90	110	0.308	20
Fluoride			210	4.00	200.0	0	105	90	110	0.286	20
Nitrate-N			45.8	5.00	45.16	0	101	90	110	0.495	20

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL J

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 14 of 25

Work Order:	1905168				AIN		ICAL					I I
Project:	Luminant-	MLSES A	sh Ponds	5			RunII):	IC2_1905	15A		
Sample ID 1905167-	-01CMSD	Batch ID:	90908		TestNo:	E30	0		Units:	mg/L	-	
SampType: MSD		Run ID:	IC2_19	0515A	Analysis	s Date: 5/15	5/2019 1:23:	36 PM	Prep Date	: 5/15/	/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD	RPDLimi	t Qual
Sulfate			237	30.0	200.0	41.32	97.7	90	110	0.821	20	
Sample ID 1905167-	-02CMS	Batch ID:	90908		TestNo:	E30	0		Units:	mg/L	-	
SampType: MS		Run ID:	IC2_19	0515A	Analysis	a Date: 5/15	5/2019 1:55:	36 PM	Prep Date	: 5/15/	2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD	RPDLimi	t Qual
Chloride			686	10.0	200.0	528.8	78.8	90	110			S
Fluoride			229	4.00	200.0	24.26	102	90	110			
Nitrate-N			56.2	5.00	45.16	10.55	101	90	110			
Sulfate			2520	30.0	200.0	0	1260	90	110			S
Sample ID 1905167-	-02CMSD	Batch ID:	90908		TestNo:	E30	0		Units:	mg/L	-	
SampType: MSD		Run ID:	IC2_19	0515A	Analysis	s Date: 5/15	5/2019 2:11:	36 PM	Prep Date	: 5/15/	/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD	RPDLimi	t Qual
Chloride			688	10.0	200.0	528.8	79.8	90	110	0.292	20	S
Fluoride			229	4.00	200.0	24.26	102	90	110	0.251	20	
Nitrate-N			57.3	5.00	45.16	10.55	103	90	110	1.85	20	
Sulfate			<10.0	30.0	200.0	0	0	90	110	0	20	S

ANALYTICAL QC SUMMARY REPORT

ualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted of
	RL	Reporting Limit	S	Spike Recovery outside
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP

Analyte detected between SDL and RL

it control limits Page 15 of 25

e control limits

Parameter not NELAP certified Ν

Qu

CLIENT:

Golder

CLIENT:	Golder

Work Order:

ANALYTICAL QC SUMMARY REPORT

IC2_190515A

RunID:

Project: Luminant-MLSES Ash Ponds

1905168

Sample ID	ICV-190515	Batch ID:	R104097		TestNo	: E30	0		Units:	mg/L	-
SampType:	ICV	Run ID:	IC2_1905	515A	Analysi	s Date: 5/15	/2019 9:38:	50 AM	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			25.8	1.00	25.00	0	103	90	110		
Fluoride			10.3	0.400	10.00	0	103	90	110		
Nitrate-N			13.0	0.500	12.50	0	104	90	110		
Sulfate			77.8	3.00	75.00	0	104	90	110		
Sample ID	CCV1-190515	Batch ID:	R104097		TestNo	: E30	0		Units:	mg/l	_
SampType:	CCV	Run ID:	IC2_1905	515A	Analysi	s Date: 5/15	/2019 4:51:	36 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			10.4	1.00	10.00	0	104	90	110		
Fluoride			4.15	0.400	4.000	0	104	90	110		
Nitrate-N			5.13	0.500	5.000	0	103	90	110		
Sulfate			30.8	3.00	30.00	0	103	90	110		
Sample ID	CCV2-190515	Batch ID:	R104097		TestNo	: E30	0		Units:	mg/l	_
SampType:	CCV	Run ID:	IC2_1905	615A	Analysi	s Date: 5/15	/2019 8:35:	35 PM	Prep Date	: :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			10.6	1.00	10.00	0	106	90	110		
Fluoride			4.20	0.400	4.000	0	105	90	110		
Nitrate-N			5.20	0.500	5.000	0	104	90	110		
Sulfate			31.5	3.00	30.00	0	105	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 16 of 25
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT:	Golder				AN	ALYTI	CAL (DC SI	IMMAR	RY RI	EPORT
Work Order:	1905168										
Project:	Luminant-	MLSES A	sh Ponds	4005			RunII): 1	C4_19051	6A	
The QC data in bat	ch 90935 app	lies to the f	ollowing samp	les: 1905	168-01C						
Sample ID MB-90	935	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: MBLK		Run ID:	IC4_190516	δA	Analysis	s Date: 5/16/2	2019 10:26	5:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			<1.00	3.00							
Sample ID LCS-9	0935	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: LCS		Run ID:	IC4_190516	6A	Analysis	a Date: 5/16/2	2019 10:42	2:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			29.5	3.00	30.00	0	98.3	90	110		
Sample ID LCSD-	90935	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: LCSD		Run ID:	IC4_190516	6A	Analysis	s Date: 5/16/2	019 10:58	8:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			29.8	3.00	30.00	0	99.2	90	110	0.935	20
Sample ID 19051	67-02CMS	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC4_190516	6A	Analysis	s Date: 5/16/2	2019 5:10:	27 PM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			4830	300	2000	2897	96.9	90	110		
Sample ID 19051	67-02CMSD	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC4_190516	6A	Analysis	a Date: 5/16/2	2019 5:26:	27 PM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			4880	300	2000	2897	99.1	90	110	0.920	20
Sample ID 19051	58-01CMS	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC4_190516	6A	Analysis	a Date: 5/16/2	2019 5:58:	26 PM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			4380	300	2000	2468	95.6	90	110		
Sample ID 19051	68-01CMSD	Batch ID:	90935		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC4_190516	6A	Analysis	a Date: 5/16/2	2019 6:14:	27 PM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Sulfate			4390	300	2000	2468	96.2	90	110	0.273	20

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J Page 17 of 25 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

N Parameter not NELAP certified

J Analyte detected between SDL and RL

CLIENT:	Golder				ΔN	ΔΙ.ΥΤΙ	AL C	C ST	IMMAI	RVF	FPORT
Work Order:	1905168										
Project:	Luminant-N	ALSES A	sh Ponds				RunID): I	C4_19051	16A	
Sample ID ICV-19	0516	Batch ID:	R104119		TestNo:	E300			Units:	mg/L	-
SampType: ICV		Run ID:	IC4_190516	6A	Analysis	Date: 5/16/2	019 9:54:2	21 AM	Prep Date:	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Sulfate			74.5	3.00	75.00	0	99.4	90	110		
Sample ID CCV1-	190516	Batch ID:	R104119		TestNo:	E300			Units:	mg/L	-
SampType: ССV		Run ID:	IC4_190516	6A	Analysis	Date: 5/16/2	019 9:10:2	26 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Sulfate			30.2	3.00	30.00	0	101	90	110		

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

Page 18 of 25

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

Project:	Luminant-N	MLSES A	Ash Ponds				RunII): I	TTRATO	R_19()516A
The QC dat 06C, 19051	a in batch 90940 appli 68-07C	ies to the f	ollowing sam	oles: 19051	68-01C, 19051	168-02C, 19	05168-03C,	1905168	-04C, 190516	8-05C,	1905168-
Sample ID	MB-90940	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.47
SampType:	MBLK	Run ID:	TITRATOR	_190516A	Analysis	s Date: 5/16	/2019 2:00:	00 PM	Prep Date:	5/16/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD F	RPDLimit Qual
Alkalinity, B	icarbonate (As CaCO	3)	<10.0	20.0							
Alkalinity, C	arbonate (As CaCO3)		<10.0	20.0							
Alkalinity, H	lydroxide (As CaCO3)		<10.0	20.0							
Alkalinity, T	otal (As CaCO3)		<20.0	20.0							
Sample ID	LCS-90940	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.08
SampType:	LCS	Run ID:	TITRATOR	_190516A	Analysis	s Date: 5/16	/2019 2:04:	00 PM	Prep Date:	5/16/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD F	RPDLimit Qual
Alkalinity, T	otal (As CaCO3)		52.3	20.0	50.00	0	105	74	129		
Sample ID	1905134-01C DUP	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.52
SampType:	DUP	Run ID:	TITRATOR	_190516A	Analysis	s Date: 5/16	/2019 2:15:	00 PM	Prep Date:	5/16/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD F	RPDLimit Qual
Alkalinity, B	icarbonate (As CaCO	3)	205	20.0	0	205.8				0.536	20
Alkalinity, C	arbonate (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, H	lydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, T	otal (As CaCO3)		205	20.0	0	205.8				0.536	20
Sample ID	1905168-05C DUP	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.51
SampType:	DUP	Run ID:	TITRATOR	_190516A	Analysis	s Date: 5/16	/2019 4:30:	00 PM	Prep Date:	5/16/2	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD F	RPDLimit Qual
Alkalinity, B	icarbonate (As CaCO	3)	<10.0	20.0	0	0				0	20
Alkalinity, C	arbonate (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, H	lydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity. To	otal (As CaCO3)		<20.0	20.0	0	0				0	20

CLIENT:

Work Order:

Golder

1905168

В Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 19 of 25

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

CLIENT:	Golder				AN	ALYT	ICAL O	DC SU	UMMAR	Y REPORT
Work Order:	1905168		1. D 1.				DunI			D 100516A
Project:	Luminant-	MLSES A	Ash Ponds				Kunn	J: .		K_190510A
Sample ID ICV-19	90516	Batch ID:	R104124		TestNo	: M23	320 B		Units:	mg/L @ pH 4.34
SampType: ICV		Run ID:	TITRATO	R_190516A	Analysi	s Date: 5/16	6/2019 1:58:	00 PM	Prep Date:	5/16/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCC	93)	8.64	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	89.3	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As	CaCO3)		97.9	20.0	100.0	0	97.9	98	102	
Sample ID CCV1	-190516	Batch ID:	R104124		TestNo	: M23	320 B		Units:	mg/L @ pH 4.25
SampType: CCV		Run ID:	TITRATO	R_190516A	Analysi	s Date: 5/16	6/2019 3:39:	00 PM	Prep Date:	5/16/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	03)	21.7	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	76.8	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As	s CaCO3)		98.5	20.0	100.0	0	98.5	90	110	
Sample ID CCV2	-190516	Batch ID:	R104124		TestNo	: M23	320 B		Units:	mg/L @ pH 4.21
SampType: CCV		Run ID:	TITRATO	R_190516A	Analysi	s Date: 5/16	6/2019 4:35:	00 PM	Prep Date:	5/16/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	03)	17.7	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	81.3	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As	s CaCO3)		99.0	20.0	100.0	0	99.0	90	110	
Sample ID CCV3	-190516	Batch ID:	R104124		TestNo	: M23	320 B		Units:	mg/L @ pH 4.39
SampType: CCV		Run ID:	TITRATO	R_190516A	Analysi	s Date: 5/16	6/2019 4:54:	00 PM	Prep Date:	5/16/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbon	ate (As CaCO	03)	20.3	20.0	0					
Alkalinity, Carbona	te (As CaCO3)	77.1	20.0	0					
Alkalinity, Hydroxid	e (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As	s CaCO3)		97.4	20.0	100.0	0	97.4	90	110	

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 20 of 25

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT:	Golder				AN	AL VTI	CAL	C SU	IMMAR	Y R	EPORT
Work Order:	1905168				111						
Project:	Luminant-ML	SES As	h Ponds				RunIE): U	V/VIS_2_	19051	5B
The QC data in bat 06C, 1905168-07C	ch 90921 applies t	to the fol	lowing samp	les: 19051	168-01C, 19051	68-02C, 190)5168-03C,	1905168-	·04C, 190516	8-05C, ⁻	1905168-
Sample ID MB-90	921 Ba	tch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: MBLK	Ru	in ID:	UV/VIS_2_	190515B	Analysis	Date: 5/15/	2019 12:42	:00 PM	Prep Date:	5/15/2	019
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD R	PDLimit Qual
Phosphorus, Total	Orthophosphate (A	As <(0.0300	0.100							
Sample ID LCS-9	0921 Ba	tch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: LCS	Ru	in ID:	UV/VIS_2_	190515B	Analysis	Date: 5/15/	2019 12:43	:00 PM	Prep Date:	5/15/2	019
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD R	PDLimit Qual
Phosphorus, Total	Orthophosphate (A	As (0.513	0.100	0.5000	0	103	80	120		
Sample ID LCSD	-90921 Ba	tch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: LCSD	Ru	in ID:	UV/VIS_2_	190515B	Analysis	Date: 5/15/	2019 12:43	:00 PM	Prep Date:	5/15/2	019
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD R	PDLimit Qual
Phosphorus, Total	Orthophosphate (A	As ().504	0.100	0.5000	0	101	80	120	1.77	15
Sample ID 19051	68-01CMS Ba	tch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: MS	Ru	in ID:	UV/VIS_2_	190515B	Analysis	Date: 5/15/	2019 12:45	:00 PM	Prep Date:	5/15/2	019
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD R	PDLimit Qual
Phosphorus, Total	Orthophosphate (A	As ().587	0.100	0.5000	0.07700	102	80	120		
Sample ID 19051	68-01CMSD Ba	tch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: MSD	Ru	in ID:	UV/VIS_2_	190515B	Analysis	Date: 5/15/	2019 12:45	:00 PM	Prep Date:	5/15/2	019
Analyte		F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD R	PDLimit Qual
Phosphorus, Total	Orthophosphate (A	As ().525	0.100	0.5000	0.07700	89.6	80	120	11.2	15

Golder

CLIENT:

Page 21 of 25

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT:	Golder				AN	ALYT	ICAL C)C SU	MMA	RY REPORT
Work Orde	er: 1905168									
Project:	Luminant-	MLSES A	sh Ponds				RunID): U	V/VIS_2	_190515B
Sample ID	ICV-190515	Batch ID:	R104071		TestNo:	M45	00-P E		Units:	mg/L
SampType: I	ICV	Run ID:	UV/VIS_2	_190515B	Analysis	Date: 5/15	/2019 12:41	:00 PM	Prep Date:	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Phosphorus,	Total Orthophospha	te (As	0.204	0.100	0.2000	0	102	85	115	
Sample ID	CCV1-190515	Batch ID:	R104071		TestNo:	M45	00-P E		Units:	mg/L
SampType:	ccv	Run ID:	UV/VIS_2	_190515B	Analysis	Date: 5/15	/2019 12:51	:00 PM	Prep Date:	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Phosphorus,	Total Orthophospha	te (As	0.509	0.100	0.5000	0	102	85	115	

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Not Detected at the Method Detection Emitt

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 22 of 25

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Project: Luminant	-MLSES Ash Po	onds			RunID): U	V/VIS_2	_190520A	L
The QC data in batch 91002 app 06A, 1905168-07A	blies to the followin	g samples: 1905	168-01A, 19051	68-02A, 1905	5168-03A,	1905168-	04A, 190516	8-05A, 190	5168-
Sample ID MB-91002	Batch ID: 910)2	TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: MBLK	Run ID: UV/	VIS_2_190520A	Analysis	s Date: 5/20/2	019 3:53:0	00 PM	Prep Date:	5/20/2019)
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Iron, Ferrous	<0.050	0 0.100							Ν
Sample ID LCS-91002	Batch ID: 910)2	TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: LCS	Run ID: UV/	VIS_2_190520A	Analysis	s Date: 5/20/2	019 3:53:0	00 PM	Prep Date:	5/20/2019)
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Iron, Ferrous	0.0888	0.100	0.1000	0	88.8	85	115		Ν
Sample ID LCSD-91002	Batch ID: 910)2	TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: LCSD	Run ID: UV/	VIS_2_190520A	Analysis	s Date: 5/20/2	019 3:53:0	00 PM	Prep Date:	5/20/2019)
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Iron, Ferrous	0.0879	0.100	0.1000	0	87.9	85	115	1.05	15 N
Sample ID 1905185-11AMS	Batch ID: 910)2	TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: MS	Run ID: UV/	VIS_2_190520A	Analysis	a Date: 5/20/2	019 4:03:0	00 PM	Prep Date:	5/20/2019)
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Iron, Ferrous	0.0860	0.100	0.1000	0	86.0	85	115		Ν
Sample ID 1905185-11AMSD	Batch ID: 910)2	TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: MSD	Run ID: UV/	VIS_2_190520A	Analysis	a Date: 5/20/2	019 4:03:0	00 PM	Prep Date:	5/20/2019)
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Iron, Ferrous	0.086	0.100	0.1000	0	86.1	85	115	0.116	15 N

Work Order:

Golder

1905168

ANALYTICAL QC SUMMARY REPORT

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 23 of 25
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT:	Golder				AN	ALYTI	CAL (DC SI	U MMA I	RY R	EPORT
Work Order: Project:	1905168 Luminant-	MLSES A	sh Ponds				RunII): 1	UV/VIS_2	_19052	0A
Sample ID ICV-19	0520	Batch ID:	R104177		TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: ICV		Run ID:	UV/VIS_2_	190520A	Analysis	Date: 5/20/2	2019 3:52:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Iron, Ferrous			0.0875	0.100	0.1000	0	87.5	85	115		Ν
Sample ID CCV1-	190520	Batch ID:	R104177		TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: CCV		Run ID:	UV/VIS_2_	190520A	Analysis	Date: 5/20/2	2019 3:59:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Iron, Ferrous			0.197	0.100	0.2000	0	98.4	85	115		Ν
Sample ID CCV2-	190520	Batch ID:	R104177		TestNo:	M350	0-Fe D		Units:	mg/L	
SampType: CCV		Run ID:	UV/VIS_2_	190520A	Analysis	Date: 5/20/2	2019 4:12:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD R	PDLimit Qual
Iron, Ferrous			0.183	0.100	0.2000	0	91.7	85	115		N

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R

Page 24 of 25

RPD outside accepted control limits S Spike Recovery outside control limits

Ν Parameter not NELAP certified

55

CLIENT:	Gol	der			ΔΝ	JALVT	ICAL (C SI	IMMAR	V RF	PORT
Work Ord	der: 190	5168			1 1 1						
Project:	Lun	ninant-MLSES A	Ash Ponds	5			RunII): V	WC_19051	7D	
The QC data 06C, 19051	a in batch 909 68-07C	953 applies to the f	following s	amples: 1905	5168-01C, 1905	168-02C, 19	905168-03C,	1905168	8-04C, 190516	8-05C, 1	905168-
Sample ID	MB-90953	Batch ID:	90953		TestNo	: M25	540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_19	0517D	Analysi	s Date: 5/17	7/2019 11:40	0:00 AM	Prep Date:	5/16/20)19
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Total Dissol	ved Solids (Re	esidue, Filtera	<10.0	10.0							
Sample ID	LCS-90953	Batch ID:	90953		TestNo	: M25	540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_19	0517D	Analysi	is Date: 5/17	7/2019 11:40	0:00 AM	Prep Date:	5/16/20)19
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Total Dissol ^y	ved Solids (Re	esidue, Filtera	745	10.0	745.6	0	99.9	90	113		
Sample ID	1905167-020	-DUP Batch ID:	90953		TestNo	: M25	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_19	0517D	Analysi	s Date: 5/17	7/2019 11:40	0:00 AM	Prep Date:	5/16/20)19
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Total Dissol	ved Solids (Re	esidue, Filtera	5340	50.0	0	5375				0.747	5
Sample ID	1905168-020	-DUP Batch ID:	90953		TestNo	: M25	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_19	0517D	Analysi	is Date: 5/17	7/2019 11:40	0:00 AM	Prep Date:	5/16/20)19
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Total Dissol	ved Solids (Re	esidue, Filtera	940	50.0	0	910.0				3.24	5

Golder

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 25 of 25
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

ANALYTICAL REPORT

DHL Analytical, Inc.

Sample Delivery Group: Samples Received: Project Number: Description:

L1100989 05/21/2019 1905168

Report To:

John DuPont 2300 Double Creek Drive Round Rock, TX 78664

Entire Report Reviewed By:

Hidson

Donna Eidson Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: DHL Analytical, Inc. PROJECT: SDG: 1905168 57 L1100989

DATE/TIME: 06/10/19 17:46

PAGE: 1 of 19

Тс

Ss

Cn

Śr.

Qc

GI

AI

Sc

TABLE OF CONTENTS

N.

Cp

U e

Ss

Cn

Sr

[°]Qc

GI

ΔI

°Sc

Cp: Cover Page	real and the second sec
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
H-31 L1100989-01	6
H-32 L1100989-02	7
H-27 L1100989-03	8
H-29 L1100989-04	9
H-28 L1100989-05	10
H-26 L1100989-06	11
H-33 L1100989-07	12
Qc: Quality Control Summary	13
Radiochemistry by Method 904	13
Radiochemistry by Method SM7500Ra B M	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

PROJECT: SDG: 1905168 **58** L1100989 DATE/TIME: 06/10/19 17:46 PAGE: 2 of 19

LL 24 L 1100000 01 New Detable Water		·	Collected by	Collected date/time 05/14/19 07:40	Received dat 05/21/19 10:1	.e/time 0
H-31 L1100989-01 Non-Potable Water	Datab	Dilution	Duranakian	Analusia	Applyct	Location
Method	Batch	Dilution	date/time	date/time	Andiyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
adiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
adiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
H-32 L1100989-02 Non-Potable Water				05/14/19 08.25	05/21/19 10.1	0
<i>I</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, Tl
adjochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, Tl
adiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	ຸMt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
H-27 L1100989-03 Non-Potable Water				05/14/19 09:40	05/21/19 10:1	0
Vethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
	100005051		date/time	08te/time	INAD	Mt luliat "
adiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10		Mt Juliet T
adiochemistry by Method Calculation adiochemistry by Method SM7500Ra B M	WG1287234 WG1287234	י 1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
I-29 L1100989-04 Non-Potable Water				05/14/19 17.25	05/21/19 10:1	0
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, T
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, T
adiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, 1
H-28 L1100989-05 Non-Potable Water			Collected by	Collected date/time 05/14/19 12:30	Received da 05/21/19 10:*	ite/time 10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, 1
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, T
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, 1
			Collected by	Collected date/time 05/14/19 14:25	Received da 05/21/19 10:	ite/time 10
H-26 LTUU989-06 Non-Potable Water		Dilution	Preparation	Analysis	Analyst	Location
H-26 L1100989-06 Non-Potable Water Method	Batch	Dilution	roparation	,		
H-26 L1100989-06 Non-Potable Water Method	Batch	Dilution	date/time	date/time	a	
Method Radiochemistry by Method 904	Batch WG1285651	1	date/time 05/24/19 09:05	date/time 05/31/19 11:10	JMR	Mt. Juliet, 1
Method Radiochemistry by Method 904 Radiochemistry by Method Calculation	Batch WG1285651 WG1287234	1 1	date/time 05/24/19 09:05 05/29/19 08:27	date/time 05/31/19 11:10 06/03/19 17:48	JMR RGT	Mt. Juliet, 1 Mt. Juliet, 1

ACCOUNT: DHL Analytical, Inc. PROJECT: 1905168 **59** SDG: L1100989 DATE/TIME: 06/10/19 17:46 PAGE: 3 of 19

SΑ	MPLE S	SUMN	IARY		ONE LA	B. NATIONWIDI
 H-33 L1100989-07 Non-Potable Water			Collected by	Collected date/time 05/14/19 15:30	Received date/ 05/21/19 10:10	/time
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN

.

Ср

Тс

DATE/TIME: 06/10/19 17:46 PAGE: 4 of 19

L1100989

ONE LAB. NATIONWIDE.

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager

ACCOUNT: DHL Analytical, Inc.

Collected date/time: 05/14/19 0	7:40			L1100989			
Radiochemistry by Meth	od 904						1
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	LΥ
Analyte	pCi/l		+/-	pCi/l	date / time		12
RADIUM-228	0.531		0.515	0.789	05/31/2019 11:10	WG1285651	Tc
(T) Borium	120			62.0-143	05/31/2019 11:10	WG1285651	L
(T) Yttrium	93.0			79.0-136	05/31/2019 11:10	WG1285651	³ Ss
Radiochemistry by Meth	od Calcula	tion				·	4 (Cp
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		а <u>,</u>
Combined Radium	3.15		1.09	0.978	06/03/2019 17:48	<u>WG1287234</u>	Sr
Radiochemistry by Meth	od SM750	ORa B M					⁶ Qc
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	L
Analyte	pCi/l		+/-	pCi/l	date / time		⁷ GI
	0.00		0 570	A 400	00/00/0010 17:40	WC1007001	

0.189

30.0-143

06/03/2019 17:48

06/03/2019 17:48

WG1287234

WG1287234

SAMPLE RESULTS - 01

H-31

Analyte RADIUM-226

(T) Barium-133

2.62

104

0.578

ΆI

°Sc

ONE LAB. NATIONWIDE.

Radiochemistry by N	Aethod 904						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-228	0.147		0.380	0.546	05/31/2019 11:10	WG1285651	TC
(T) Barium	100			62.0-143	05/31/2019 11:10	WG1285651	
(T) Yttrium	109			79.0-136	05/31/2019 11:10	WG1285651	³ Ss
Radiochemistry by N	Aethod Calcu	ulation					4
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		r,
Combined Radium	0.450	ander an enderson of contrast for the	0.625	0.833	06/03/2019 17:48	WG1287234	Sr

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	0.303		0.245	0.287	06/03/2019 17:48	WG1287234
(T) Barlum-133	105			30.0-143	06/03/2019 17:48	<u>WG1287234</u>

		•••••	 ···		 	
ACCOUNT:			1.5			
DHL Analytical, I	nc.					

-

'GI

AI

Sc

H-27 SAMPLE	RESULTS -	03	ONE LAB. NATIONWIDE.
Collected date/time: 05(14/19 09:40	L1100989	ulial dia ana batang akti	na filiante en la sectoria. A

Radiochemistry by Method 904

Radiochemistry by Method 904										
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch				
Analyte	pCi/l		+/-	pCi/l	date / time		F 2			
RADIUM-228	0.928		0.365	0.563	05/31/2019 11:10	WG1285651	TC			
(T) Barium	96.7			62.0-143	05/31/2019 11:10	WG1285651				
(T) Yttrium	98.1			79.0-136	05/31/2019 11:10	<u>WG1285651</u>	³ Ss			

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	2.03		0.814	0.854	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	1.10		0.449	0.291	06/03/2019 17:48	WG1287234
(T) Barium-133	85.4			30.0-143	06/03/2019 17:48	WG1287234

Qc GI AI

°Sc

Cn

sr

SDG:

Radiochemistry by Meth	nod 904					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	0.352		0.428	0.707	05/31/2019 11:10	WG1285651
(T) Barium	116			62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	96.5			79.0-136	05/31/2019 11:10	WG1285651
Radiochemistry by Meth	nod Calcul	ation				
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
-		*****	0.044	4.00	00/00/2010 17:48	14/C1007001

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier Unce	tainty MDA	Analysis Date	Batch
Analyte	pCi/l	+/-	pCi/l	date / time	
RADIUM-226	0.122	0.213	0.339	06/03/2019 17:48	WG1287234
(T) Barium-133	72.2		30.0-143	06/03/2019 17:48	WG1287234

L1100989 65

SDG:

ONE LAB. NATIONWIDE.

. Qc

Gl

ΆI

°Sc

H-28				SAMPL	E RESUL	TS - 05.		ONE LAB. NAT	IONWIDE.
Collected	date/time:	05/14/19	12:30		L1100989			la di nenderal	a da electro

Radiochemistry by Method 904

Radiochemistry by Method 904										
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch				
Analyte	pCi/l		+/-	pCi/l	date / time		12			
RADIUM-228	0.615		0.370	0.575	05/31/2019 11:10	WG1285651	Tc			
(T) Barium	106			62.0-143	05/31/2019 11:10	WG1285651				
(T) Yttrium	95.5			79.0-136	05/31/2019 11:10	WG1285651	³ Ss			

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	1.06		0.634	0.777	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	0.444		0.264	0.202	06/03/2019 17:48	WG1287234
(T) Barium-133	90.7		el constructor	30.0-143	06/03/2019 17:48	<u>WG1287234</u>

⁴Cn Śr 'Qc GL ΑI

°Sc

. M

Radiochemistry by Method 904

H-26

						3 6
	Result Qual	ifier Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l	+/-	pCi/l	date / time		12
RADIUM-228	0.598	0.330	0.545	05/31/2019 11:10	WG1285651	17
(T) Barium	98.4		62.0-143	05/31/2019 11:10	WG1285651	i
(T) Yttrium	113		79.0-136	05/31/2019 11:10	WG1285651	3

RESULTS L1100989

- 06

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	2.03		0.761	0.783	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l	+/-	pCi/l	date / time	······	
RADIUM-226	1.43	0.431	0.238	06/03/2019 17:48	WG1287234	
(T) Barium-133	103		30.0-143	06/03/2019 17:48	WG1287234	

Al

Sc

M

ONE LAB. NATIONWIDE.

H-33					
Collected	date/time:	05/14	1/19	15:30	

S -07

SAMPLE RESULT

Radiochemistry by Method 904

	Result	<u>Qualifier</u> l	Jncertainty	MDA	Analysis Date	Batch	<u></u>			
Analyte	pCi/l	-	+/-	pCi/l	date / time		12			
RADIUM-228	1.35	().414	0.627	05/31/2019 11:10	WG1285651	TC			
(T) Barium	97.4			62.0-143	05/31/2019 11:10	WG1285651	L			
(T) Yttrium	96.3			79,0-136	05/31/2019 11:10	WG1285651	³ Ss			

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	2.20		0.764	0.846	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

<u></u>	Result	Qualifier Uncertaint	ty MDA	Analysis Date	Batch	
Analyte	pCi/l	+/-	pCi/l	date / time		en e agre oggegan ander ander ander an den staten er en det staten en en staten staten er en en en en en en en
RADIUM-226	0.850	0.350	0.219	06/03/2019 17:48	WG1287234	
(T) Barium-133	102		30.0-143	06/03/2019 17:48	WG1287234	

Cn

ONE LAB. NATIONWIDE.

SDG:

L1100989

Radiochemistry by Method 904

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method	Blank	(MB
--------	-------	-----

(MB) R3417363-1 (05/30/19 12:10			
	MB Result MB Qu	alifier MB MDA	1	2
Analyte	pCi/l	pCi/l		Tc
Radium-228	-0.0581	0.396		
(T) Barium	105		별로 통입을 수 있을 것을 받는 것을 통입을 수 있는 것을 알려요. 이 가슴 것이 있는 것은 이 것은 이 것은 것을 통하는 것이 있는 것은 것이 있는 것은 것이 있는 것은 것이 있는 것이 있는 것이 있	³ Ss
(T) Yttrium	110			
				⁴ Cn

L1100977-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1100977-01 05/30/19 12:10 • (DUP) R3417363-5 05/30/19 12:10												Sr			
		Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit						
Analyte		pCi/l	pCi/l		%			%		an a	an an ann an an an ann an an an an an an	www.co.com.co.com	an ann an tha an tha tha		QC
Radium-228		-0.0695	0.650	1	200	0.741		20	3						r
(T) Bartum		109	111									ant definition an ant attra			⁷ Gl
(T) Yttrium		113	107												<u> </u>

Laboratory Control Sample (LCS)

(LCS) R3417363-2 05/30/19 12:10											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits LC	<u>.CS Qualifier</u>						
Analyte	pCi/l	pCi/l	%	%							
Radium-228	5.00	5.29	106	80.0-120							
(T) Barium	신상 부분을		104		전쟁을 소리로, 문제로 물을 수 있다. 이 동네들은 물건적이 건강되는 것이 가슴을 통 것 같아.						
(T) Yttrium			114								

L1100989-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100989-01 05/31/19 11:10 • (MS) R3417363-3 05/30/19 12:10 • (MSD) R3417363-4 05/30/19 12:10													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%		an war war an an an an an an an an an	%	er sollar telle ets taltantet d'a a	%
Radium-228	20.0	0.531	20.9	19.5	102	94.8	1	70.0-130			7.08		20
(T) Barium		120	g a built		102	115							
(T) Yttrium		93.0			117	114							

PROJECT:

1905168

Al

Sc
WG1287234 Radiochemistry by Method SM7500Ra B M

QUALITY CONTROL SUMMARY

L1100989-01,02,03,04,05,06,07

Method Blank (MB)

Meruon piauk (IVID)				Col
(MB) R3419580-1 06	/03/19 17:43				
	MB Result	MB Qualifier	MB MDA		2
Analyte	pCi/l		pCi/l		IC
Radium-226	0.00994		0.0573		L
(T) Barium-133	67.4			같은 것은 방법에 한 것은 아직 물란을 알고 있는 것이 가지, 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것이 있는 것을 수 있는 것은 것을 가지 않는다. 같은 것은 방법에 한 것은 아직은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 수 있는 것은	³ Ss

L1103100-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1103100-01 06/03/19	17:43 • (DUP) F	R3419580-7 0	6/03/19 17	:43					E .
	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit	Sr
Analyte	pCi/l	pCi/l		%			%		6
Radium-226	0.267	1.33	1	133	2.21		20	3	QC
(T) Barium-133	110	102							,
									GI

Laboratory Control Sample (LCS)

Laboratory Cor											
(LCS) R3419580-2 06/03/19 17:43											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	0					
Analyte	pCi/l	pCi/l	%	%		ĨSc ∣					
Radium-226	5.02	5.10	102	80.0-120							
(T) Barium-133			56.0		a la						

L1101875-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1101875-03 06/03/19 17:43 • (MS) R3419580-3 06/03/19 17:43 • (MSD) R3419580-6 06/03/19 17:43													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCī/l	pCi/l	pCi/l	pCi/l	%	%		%			%	an a sina a sana in marana in m	%
Radium-226	20.1	0.637	17.9	20.3	86.0	97.8	1	75.0-125			12.4		20
(Ti Barium-133		83.3			53.7	71.3							

L1101881-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1101881-03 06/03/19 17:43 • (MS) R3419580-4 06/03/19 17:43 • (MSD) R3419580-5 06/03/19 17:43													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%	· state succession	a a na ann ann ann an ann a' ann a'	%	ngen and an	%
Radium-226	20.1	0.522	21.1	19.2	102	93.1	1	75.0-125			9.23		20
(T) Barium-133		105			89.6	99.7			le le clusel				

70

PROJECT:

1905168

Cn

GLOSSARY OF TERMS

Ss

Cn

Sr

Qc

G

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions Minimum Detectable Activity MDA Recovery. Rec Replicate Error Ratio RER RPD Relative Percent Difference. Sample Delivery Group. SDG Tracer - A radioisotone of known concentration added to a solution of chemically equivalent radioisotopes at a known (T)concentration to assist in monitoring the yield of the chemical separation. The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes Analyte reported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the Dilution laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or Limits duplicated within these ranges The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control **Original Sample** sample. The Original Sample may not be included within the reported SDG. This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable. Qualifier The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL. Result (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte Uncertainty Confidence level of 2 sigma (Radiochemistry) A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will Case Narrative (Cn) be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report. This section of the report includes the results of the laboratory quality control analyses required by procedure or Quality Control analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material. Summary (Qc) This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the Sample Chain of Custody (Sc) samples from the time of collection until delivery to the laboratory for analysis. This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported. Sample Results (Sr) This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and Sample Summary (Ss) times of preparation and/or analysis Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCOUNT: DHL Analytical; Inc. PROJECT: SDG: 1905168 **71** L1100989

DATE/TIME: 06/10/19 17:46

ACCREDITATIONS & LOCATIONS

NE-OS-15-05

n/a 11742 Env375

DW21704 41 R-140

CL0069 9915 TN200002

68-02979 LAO00356 84004 n/a 2006 T104704245-18-15

LAB0152 TN00003 VT2006 460132 C847 233 9980939910 A2LA

TN-03-2002-34 2975 TN002

¥.

Co

Тс

Ss

Ċn

Sr

Qc

GI

Sc

PAGE:

16 of 19

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NELAP
California	2932	New Mexico 1
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee 14
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERTOO86	Wyomina

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

SDG: DATE/TIME: ACCOUNT: PROJECT: L1100989 06/10/19 17:46 DHL Analytical, Inc. 1905168 72

Pace Analytical National Cen Cooler Rec	iter for Testing & Innova eipt Form	ation	
Name QILL DETT	SDG#:	11009	89
WALCENIA IN	Temperature:	Anb	
Cooler Received/Opened On: 5/ L1/19			yanisii
Received By: Brock Fariss			
Signature: AL Fairs			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			
COC Signed / Accurate?		\square	-
Bottles arrive intact?		h	
Correct bottles used?		\mathbf{f}	
Sufficient volume sent?		torenetes	
If Applicable VOA Zero headspace?			
Preservation Correct / Checked?		.L	-

Kelsey Stephenson

Login #: L1100989 Client:DHLRRTX Date:05/21 Evaluated by:Kelsey S	

Non-Conformance (check applicable items)

	Sample Integrity	Chain of Custody Clarification	
	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
	Temperature not in range	Chain of custody is incomplete	Insufficient packing material around container
	Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
x	oH not in range	Please specify TCLP requested.	Improper handling by earrier (FedEx / UPS / Courie
	Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
	Broken container	Client did not "X" analysis.	Received by:
	Broken container:	Chain of Custody is missing	Date/Time:
	Sufficient sample remains		Temp./Cont. Rec./pH:
			Carrier:
			Tracking#

Login Comments: 1 of 2 H-32 was received with a pH of 6. pH adj in login 1511 5/21

Client informed by:	Call Email Voice Mail Date:	Time:
TSR Initials:	Client Contact:	

Login Instructions:

Noted 5/21/19 1547

1100989

Page 1 of 1

CHAIN-OF-CUSTODY RECORD

DHL Analytical, Inc.

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222

Work Order 1905168

FAX: (512) 388-8229

and the second second

Subcontractor: Pace Analytical 12065 Lebanon Rd Mt. Juliet, TN 37122		T F A	EL: (615) 773-5923 AX: cct #: DHLRRTX			e P	Demusted Tests		15-May-19
hi name	Matrix	DHL#	Date Collected	Bottle Type	Ra - 228 E904.0	Ra- 226 M7500 Ra B M			<i></i>
Squipte to	Anuonus	1-01D	05/14/19 07:40 AM	1LHDPEHNO3		··· •	and a second sec	· · · · · · · · · · · · · · · · · · ·	
H-31	Aqueous	-01E	05/14/19 07:40 AM	1LHDPEHNO3	1		and the second	and the second sec	02
H-31	Acueous	-020	05/14/19 08:25 AM	1LHDPEHNO3					
11-32	Aqueous	; -02E	05/14/19 08:25 AM	11LHDPEHNO3					03
H-27	Aqueous	s -03D	05/14/19 09:40 AM	1LHDPEHNO3			and a second		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H-27	Aqueous	s -03E	05/14/19 09:40 AM	1LHUPEHNUS	*	1	y mone of merical in menu in a		04
H-29	Aqueou	s -04D	05/14/19 11:25 AM		1	and the second			din and a state of the state of
11-29	Aqueou	s [-04E]	05/14/19 11:25 AM	10 HDPEHNO3		1 m			1. S Y 1
H-28	Aqueou	s -05D	05/14/19 12:30 PM	11 HOPEHNOS	1				06
H-28	Aqueou	s -05E	05/14/19/12:30 mm	1 HDPEHNO		1	and a second sec		. Trees
H-26	Aqueou	s -060	05/14/19 02:25 FM	1LHDPEHNO	1				07
H-26	Aqueou		05/14/19 03:30 PM	1LHDPEHNO	3	1	A CONTRACTOR OF A CONTRACTOR O		
H-33	Aqueou	is -07D	05/14/19 03 30 PM	1LHDPEHNO:	3 1			E an	1

General Comments:

Please analyze these samples with Normal Tumaround Time. Report RA-226, Ra-228 & Combined per Specs. Quality Control Package Needed: Standard - NELAC Rad Test compliant Email to cac@dhlanalytical.com & dupont@dhlanalytical.com

Date/Time | 5/17/19 1900

Date/Time 5/21/19 1010

Anal

RU:14

Relinquished by:

Relinquished by:

Received by:

1.15 m @ 1511

RAD SCREEN: <0.5 mP/h

H007

golder.com